920 resultados para Distributed Control Problems
Resumo:
Dedicated short-range communications (DSRC) are a promising vehicle communication technique for collaborative road safety applications (CSA). However, road safety applications require highly reliable and timely wireless communications, which present big challenges to DSRC based vehicle networks on effective and robust quality of services (QoS) provisioning due to the random channel access method applied in the DSRC technique. In this paper we examine the QoS control problem for CSA in the DSRC based vehicle networks and presented an overview of the research work towards the QoS control problem. After an analysis of the system application requirements and the DSRC vehicle network features, we propose a framework for cooperative and adaptive QoS control, which is believed to be a key for the success of DSRC on supporting effective collaborative road safety applications. A core design in the proposed QoS control framework is that network feedback and cross-layer design are employed to collaboratively achieve targeted QoS. A design example of cooperative and adaptive rate control scheme is implemented and evaluated, with objective of illustrating the key ideas in the framework. Simulation results demonstrate the effectiveness of proposed rate control schemes in providing highly available and reliable channel for emergency safety messages. © 2013 Wenyang Guan et al.
Resumo:
In this paper, we study the management and control of service differentiation and guarantee based on enhanced distributed function coordination (EDCF) in IEEE 802.11e wireless LANs. Backoff-based priority schemes are the major mechanism for Quality of Service (QoS) provisioning in EDCF. However, control and management of the backoff-based priority scheme are still challenging problems. We have analysed the impacts of backoff and Inter-frame Space (IFS) parameters of EDCF on saturation throughput and service differentiation. A centralised QoS management and control scheme is proposed. The configuration of backoff parameters and admission control are studied in the management scheme. The special role of access point (AP) and the impact of traffic load are also considered in the scheme. The backoff parameters are adaptively re-configured to increase the levels of bandwidth guarantee and fairness on sharing bandwidth. The proposed management scheme is evaluated by OPNET. Simulation results show the effectiveness of the analytical model based admission control scheme. ©2005 IEEE.
Resumo:
Smart cameras allow pre-processing of video data on the camera instead of sending it to a remote server for further analysis. Having a network of smart cameras allows various vision tasks to be processed in a distributed fashion. While cameras may have different tasks, we concentrate on distributed tracking in smart camera networks. This application introduces various highly interesting problems. Firstly, how can conflicting goals be satisfied such as cameras in the network try to track objects while also trying to keep communication overhead low? Secondly, how can cameras in the network self adapt in response to the behavior of objects and changes in scenarios, to ensure continued efficient performance? Thirdly, how can cameras organise themselves to improve the overall network's performance and efficiency? This paper presents a simulation environment, called CamSim, allowing distributed self-adaptation and self-organisation algorithms to be tested, without setting up a physical smart camera network. The simulation tool is written in Java and hence allows high portability between different operating systems. Relaxing various problems of computer vision and network communication enables a focus on implementing and testing new self-adaptation and self-organisation algorithms for cameras to use.
Resumo:
The author analyzes some peculiarities of information perception and the problems of tests evaluation. A fuzzy model of tests evaluation as means of increasing the effectiveness of knowledge control is suggested.
Resumo:
Partial support of the Hungarian State Eötvös Scholarship, the Hungarian National Science Fund (Grant No. OTKA 42559 and 42706) and the Mobile Innovation Center, Hungary is gratefully acknowledged.
Resumo:
BOOK REVIEWS Multibody System Mechanics: Modelling, Stability, Control, and Ro- bustness, by V. A. Konoplev and A. Cheremensky, Mathematics and its Appli- cations Vol. 1, Union of Bulgarian Mathematicians, Sofia, 2001, XXII + 288 pp., $ 65.00, ISBN 954-8880-09-01
Resumo:
In the present paper the problems of the optimal control of systems when constraints are imposed on the control is considered. The optimality conditions are given in the form of Pontryagin’s maximum principle. The obtained piecewise linear function is approximated by using feedforward neural network. A numerical example is given.
Resumo:
Signal processing is an important topic in technological research today. In the areas of nonlinear dynamics search, the endeavor to control or order chaos is an issue that has received increasing attention over the last few years. Increasing interest in neural networks composed of simple processing elements (neurons) has led to widespread use of such networks to control dynamic systems learning. This paper presents backpropagation-based neural network architecture that can be used as a controller to stabilize unsteady periodic orbits. It also presents a neural network-based method for transferring the dynamics among attractors, leading to more efficient system control. The procedure can be applied to every point of the basin, no matter how far away from the attractor they are. Finally, this paper shows how two mixed chaotic signals can be controlled using a backpropagation neural network as a filter to separate and control both signals at the same time. The neural network provides more effective control, overcoming the problems that arise with control feedback methods. Control is more effective because it can be applied to the system at any point, even if it is moving away from the target state, which prevents waiting times. Also control can be applied even if there is little information about the system and remains stable longer even in the presence of random dynamic noise.
Resumo:
Applied problems of functional homonymy resolution for Russian language are investigated in the work. The results obtained while using the method of functional homonymy resolution based on contextual rules are presented. Structural characteristics of minimal contextual rules for different types of functional homonymy are researched. Particular attention is paid to studying the control structure of the rules, which allows for the homonymy resolution accuracy not less than 95%. The contextual rules constructed have been realized in the system of technical text analysis.
Resumo:
Problems for intellectualisation for man-machine interface and methods of self-organization for network control in multi-agent infotelecommunication systems have been discussed. Architecture and principles for construction of network and neural agents for telecommunication systems of new generation have been suggested. Methods for adaptive and multi-agent routing for information flows by requests of external agents- users of global telecommunication systems and computer networks have been described.
Resumo:
The problems and methods for adaptive control and multi-agent processing of information in global telecommunication and computer networks (TCN) are discussed. Criteria for controllability and communication ability (routing ability) of dataflows are described. Multi-agent model for exchange of divided information resources in global TCN has been suggested. Peculiarities for adaptive and intelligent control of dataflows in uncertain conditions and network collisions are analyzed.
Resumo:
Chaos control is a concept that recently acquiring more attention among the research community, concerning the fields of engineering, physics, chemistry, biology and mathematic. This paper presents a method to simultaneous control of deterministic chaos in several nonlinear dynamical systems. A radial basis function networks (RBFNs) has been used to control chaotic trajectories in the equilibrium points. Such neural network improves results, avoiding those problems that appear in other control methods, being also efficient dealing with a relatively small random dynamical noise.
Resumo:
AMS Subj. Classification: 49J15, 49M15
Resumo:
This paper looks at potential distribution network stability problems under the Smart Grid scenario. This is to consider distributed energy resources (DERs) e.g. renewable power generations and intelligent loads with power-electronic controlled converters. The background of this topic is introduced and potential problems are defined from conventional power system stability and power electronic system stability theories. Challenges are identified with possible solutions from steady-state limits, small-signal, and large-signal stability indexes and criteria. Parallel computation techniques might be included for simulation or simplification approaches are required for a largescale distribution network analysis.
Resumo:
There is an increasing call for applications which use a mixture of batteries. These hybrid battery solutions may contain different battery types for example; using second life ex-transportation batteries in grid support applications or a combination of high power, low energy and low power, high energy batteries to meet multiple energy requirements or even the same battery types but under different states of health for example, being able to hot swap out a battery when it has failed in an application without changing all the batteries and ending up with batteries with different performances, capacities and impedances. These types of applications typically use multi-modular converters to allow hot swapping to take place without affecting the overall performance of the system. A key element of the control is how the different battery performance characteristics may be taken into account and the how the power is then shared among the different batteries in line with their performance. This paper proposes a control strategy which allows the power in the batteries to be effectively distributed even under capacity fade conditions using adaptive power sharing strategy. This strategy is then validated against a system of three different battery types connected to a multi-modular converter both with and without capacity fade mechanisms in place.