970 resultados para Dispersal patterns
Resumo:
Distribution of soft sediment benthic fauna and the environmental factors affecting them were studied, to investigate changes across spatial and temporal scales. Investigations took place at Lough Hyne Marine Reserve using a range of methods. Data on the sedimentation rates of organic and inorganic matter were collected at monthly intervals for one year at a number of sites around the Lough, by use of vertical midwater-column sediment traps. Sedimentation of these two fractions were not coupled; inorganic matter sedimentation depended on hydrodynamic and weather factors, while the organic matter sedimentation was more complex, being dependent on biological and chemical processes in the water column. The effects of regular hypoxic episodes on benthic fauna due to a natural seasonal thermocline were studied in the deep Western Trough, using camera-equipped remotely-operated vehicle to follow transects, on a three-monthly basis over one year. In late summer, the area below the thermocline of the Western Trough was devoid of visible fauna. Decapod crustaceans were the first taxon to make use of ameliorating oxygen conditions in autumn, by darting below the thermocline depth, most likely to scavenge. This was indicated by tracks that they left on the surface of the Trough floor. Some species, most noticeably Fries’ goby Lesueurigobius friesii, migrated below the thermocline depth when conditions were normoxic and established semi-permanent burrows. Their population encompassed all size classes, indicating that this habitat was not limited to juveniles of this territorial species. Recolonisation by macrofauna and burrowing megafauna was studied during normoxic conditions, from November 2009 to May 2010. Macrofauna displayed a typical post-disturbance pattern of recolonisation with one species, the polychaete Scalibregma inflatum, occurring at high abundance levels in March 2010. In May, this population had become significantly reduced and a more diverse community was established. The abundance of burrowing infauna comprising decapods crabs and Fries’ gobies, was estimated by identifying and counting their distinctive burrow structures. While above the summer thermocline depth, burrow abundance increased in a linear fashion, below the thermocline depth a slight reduction of burrow abundance occurred in May, when oxygen conditions deteriorated again. The majority of the burrows occurring in May were made by Fries’ gobies, which are thought to encounter low oxygen concentrations in their burrows. Reduction in burrow abundance of burrowing shrimps Calocaris macandreae and Callianassa subterranea (based on descriptions of burrow structures from the literature), from March to May, might be related to their reduced activity in hypoxia, leading to loss of structural burrow maintenance. Spatial and temporal changes to macrofaunal assemblage structures were studied seasonally for one year across 5 sites in the Lough and subject to multivariate statistical analysis. Assemblage structures were significantly correlated with organic matter levels in the sediment, the amounts of organic matter settling out of the water column one month before macrofaunal sampling took place as well as current speed and temperature. This study was the first to investigate patterns and processes in the Lough soft sediment ecology across all 3 basins on a temporal and spatial scale. An investigation into the oceanographic aspects of the development, behaviour and break-down of the summer thermocline of Lough Hyne was performed in collaboration with researchers from other Irish institutions.
Resumo:
European badgers (Meles meles) are an important part of the Irish ecosystem; they are a component of Ireland’s native fauna and are afforded protection by national and international laws. The species is also a reservoir host for bovine tuberculosis (bTB) and implicated in the epidemiology of bTB in cattle. Due to this latter point, badgers have been culled in the Republic of Ireland (ROI) in areas where persistent cattle bTB outbreaks exist. The population dynamics of badgers are therefore of great pure and applied interest. The studies within this thesis used large datasets and a number of analytical approaches to uncover essential elements of badger populations in the ROI. Furthermore, a review and meta-analysis of all available data on Irish badgers was completed to give a framework from which key knowledge gaps and future directions could be identified (Chapter 1). One main finding suggested that badger densities are significantly reduced in areas of repeated culling, as revealed through declining trends in signs of activity (Chapter 2) and capture numbers (Chapter 2 and Chapter 3). Despite this, the trappability of badgers was shown to be lower than previously thought. This indicates that management programmes would require repeated long-term efforts to be effective (Chapter 4). Mark-recapture modelling of a population (sample area: 755km2) suggested that mean badger density was typical of continental European populations, but substantially lower than British populations (Chapter 4). Badger movement patterns indicated that most of the population exhibited site fidelity. Long-distance movements were also recorded, the longest of which (20.1km) was the greatest displacement of an Irish badger currently known (Chapter 5). The studies presented in this thesis allows for the development of more robust models of the badger population at national scales (see Future Directions). Through the use of large-scale datasets future models will facilitate informed sustainable planning for disease control.
Resumo:
Contemporary IT standards are designed, not selected. Their design enacts a complex process that brings together a coalition of players. We examine the design of the SOAP standard to discover activity patterns in this design process. The paper reports these patterns as a precursor to developing a micro-level process theory for designing IT standards.
Resumo:
BACKGROUND: Like other vertebrates, primates recognize their relatives, primarily to minimize inbreeding, but also to facilitate nepotism. Although associative, social learning is typically credited for discrimination of familiar kin, discrimination of unfamiliar kin remains unexplained. As sex-biased dispersal in long-lived species cannot consistently prevent encounters between unfamiliar kin, inbreeding remains a threat and mechanisms to avoid it beg explanation. Using a molecular approach that combined analyses of biochemical and microsatellite markers in 17 female and 19 male ring-tailed lemurs (Lemur catta), we describe odor-gene covariance to establish the feasibility of olfactory-mediated kin recognition. RESULTS: Despite derivation from different genital glands, labial and scrotal secretions shared about 170 of their respective 338 and 203 semiochemicals. In addition, these semiochemicals encoded information about genetic relatedness within and between the sexes. Although the sexes showed opposite seasonal patterns in signal complexity, the odor profiles of related individuals (whether same-sex or mixed-sex dyads) converged most strongly in the competitive breeding season. Thus, a strong, mutual olfactory signal of genetic relatedness appeared specifically when such information would be crucial for preventing inbreeding. That weaker signals of genetic relatedness might exist year round could provide a mechanism to explain nepotism between unfamiliar kin. CONCLUSION: We suggest that signal convergence between the sexes may reflect strong selective pressures on kin recognition, whereas signal convergence within the sexes may arise as its by-product or function independently to prevent competition between unfamiliar relatives. The link between an individual's genome and its olfactory signals could be mediated by biosynthetic pathways producing polymorphic semiochemicals or by carrier proteins modifying the individual bouquet of olfactory cues. In conclusion, we unveil a possible olfactory mechanism of kin recognition that has specific relevance to understanding inbreeding avoidance and nepotistic behavior observed in free-ranging primates, and broader relevance to understanding the mechanisms of vertebrate olfactory communication.
Resumo:
BACKGROUND: The superior colliculus (SC) has been shown to play a crucial role in the initiation and coordination of eye- and head-movements. The knowledge about the function of this structure is mainly based on single-unit recordings in animals with relatively few neuroimaging studies investigating eye-movement related brain activity in humans. METHODOLOGY/PRINCIPAL FINDINGS: The present study employed high-field (7 Tesla) functional magnetic resonance imaging (fMRI) to investigate SC responses during endogenously cued saccades in humans. In response to centrally presented instructional cues, subjects either performed saccades away from (centrifugal) or towards (centripetal) the center of straight gaze or maintained fixation at the center position. Compared to central fixation, the execution of saccades elicited hemodynamic activity within a network of cortical and subcortical areas that included the SC, lateral geniculate nucleus (LGN), occipital cortex, striatum, and the pulvinar. CONCLUSIONS/SIGNIFICANCE: Activity in the SC was enhanced contralateral to the direction of the saccade (i.e., greater activity in the right as compared to left SC during leftward saccades and vice versa) during both centrifugal and centripetal saccades, thereby demonstrating that the contralateral predominance for saccade execution that has been shown to exist in animals is also present in the human SC. In addition, centrifugal saccades elicited greater activity in the SC than did centripetal saccades, while also being accompanied by an enhanced deactivation within the prefrontal default-mode network. This pattern of brain activity might reflect the reduced processing effort required to move the eyes toward as compared to away from the center of straight gaze, a position that might serve as a spatial baseline in which the retinotopic and craniotopic reference frames are aligned.
Resumo:
New applications of genetic data to questions of historical biogeography have revolutionized our understanding of how organisms have come to occupy their present distributions. Phylogenetic methods in combination with divergence time estimation can reveal biogeographical centres of origin, differentiate between hypotheses of vicariance and dispersal, and reveal the directionality of dispersal events. Despite their power, however, phylogenetic methods can sometimes yield patterns that are compatible with multiple, equally well-supported biogeographical hypotheses. In such cases, additional approaches must be integrated to differentiate among conflicting dispersal hypotheses. Here, we use a synthetic approach that draws upon the analytical strengths of coalescent and population genetic methods to augment phylogenetic analyses in order to assess the biogeographical history of Madagascar's Triaenops bats (Chiroptera: Hipposideridae). Phylogenetic analyses of mitochondrial DNA sequence data for Malagasy and east African Triaenops reveal a pattern that equally supports two competing hypotheses. While the phylogeny cannot determine whether Africa or Madagascar was the centre of origin for the species investigated, it serves as the essential backbone for the application of coalescent and population genetic methods. From the application of these methods, we conclude that a hypothesis of two independent but unidirectional dispersal events from Africa to Madagascar is best supported by the data.
Resumo:
BACKGROUND: Several observational studies have evaluated the effect of a single exposure window with blood pressure (BP) medications on outcomes in incident dialysis patients, but whether BP medication prescription patterns remain stable or a single exposure window design is adequate to evaluate effect on outcomes is unclear. METHODS: We described patterns of BP medication prescription over 6 months after dialysis initiation in hemodialysis and peritoneal dialysis patients, stratified by cardiovascular comorbidity, diabetes, and other patient characteristics. The cohort included 13,072 adult patients (12,159 hemodialysis, 913 peritoneal dialysis) who initiated dialysis in Dialysis Clinic, Inc., facilities January 1, 2003-June 30, 2008, and remained on the original modality for at least 6 months. We evaluated monthly patterns in BP medication prescription over 6 months and at 12 and 24 months after initiation. RESULTS: Prescription patterns varied by dialysis modality over the first 6 months; substantial proportions of patients with prescriptions for beta-blockers, renin angiotensin system agents, and dihydropyridine calcium channel blockers in month 6 no longer had prescriptions for these medications by month 24. Prescription of specific medication classes varied by comorbidity, race/ethnicity, and age, but little by sex. The mean number of medications was 2.5 at month 6 in hemodialysis and peritoneal dialysis cohorts. CONCLUSIONS: This study evaluates BP medication patterns in both hemodialysis and peritoneal dialysis patients over the first 6 months of dialysis. Our findings highlight the challenges of assessing comparative effectiveness of a single BP medication class in dialysis patients. Longitudinal designs should be used to account for changes in BP medication management over time, and designs that incorporate common combinations should be considered.
Resumo:
Background: Acute febrile respiratory illnesses, including influenza, account for a large proportion of ambulatory care visits worldwide. In the developed world, these encounters commonly result in unwarranted antibiotic prescriptions; data from more resource-limited settings are lacking. The purpose of this study was to describe the epidemiology of influenza among outpatients in southern Sri Lanka and to determine if access to rapid influenza test results was associated with decreased antibiotic prescriptions.
Methods: In this pretest- posttest study, consecutive patients presenting from March 2013- April 2014 to the Outpatient Department of the largest tertiary care hospital in southern Sri Lanka were surveyed for influenza-like illness (ILI). Patients meeting World Health Organization criteria for ILI-- acute onset of fever ≥38.0°C and cough in the prior 7 days--were enrolled. Consenting patients were administered a structured questionnaire, physical examination, and nasal/nasopharyngeal sampling. Rapid influenza A/B testing (Veritor System, Becton Dickinson) was performed on all patients, but test results were only released to patients and clinicians during the second phase of the study (December 2013- April 2014).
Results: We enrolled 397 patients with ILI, with 217 (54.7%) adults ≥12 years and 188 (47.4%) females. A total of 179 (45.8%) tested positive for influenza by rapid testing, with April- July 2013 and September- November 2013 being the periods with the highest proportion of ILI due to influenza. A total of 310 (78.1%) patients with ILI received a prescription for an antibiotic from their outpatient provider. The proportion of patients prescribed antibiotics decreased from 81.4% in the first phase to 66.3% in the second phase (p=.005); among rapid influenza-positive patients, antibiotic prescriptions decreased from 83.7% in the first phase to 56.3% in the second phase (p=.001). On multivariable analysis, having a positive rapid influenza test available to clinicians was associated with decreased antibiotic use (OR 0.20, 95% CI 0.05- 0.82).
Conclusions: Influenza virus accounted for almost 50% of acute febrile respiratory illness in this study, but most patients were prescribed antibiotics. Providing rapid influenza test results to clinicians was associated with fewer antibiotic prescriptions, but overall prescription of antibiotics remained high. In this developing country setting, a multi-faceted approach that includes improved access to rapid diagnostic tests may help decrease antibiotic use and combat antimicrobial resistance.
Resumo:
Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents. © The Ecological Society of America.
Resumo:
The foraging activity of many organisms reveal strategic movement patterns, showing efficient use of spatially distributed resources. The underlying mechanisms behind these movement patterns, such as the use of spatial memory, are topics of considerable debate. To augment existing evidence of spatial memory use in primates, we generated movement patterns from simulated primate agents with simple sensory and behavioral capabilities. We developed agents representing various hypotheses of memory use, and compared the movement patterns of simulated groups to those of an observed group of red colobus monkeys (Procolobus rufomitratus), testing for: the effects of memory type (Euclidian or landmark based), amount of memory retention, and the effects of social rules in making foraging choices at the scale of the group (independent or leader led). Our results indicate that red colobus movement patterns fit best with simulated groups that have landmark based memory and a follow the leader foraging strategy. Comparisons between simulated agents revealed that social rules had the greatest impact on a group's step length, whereas the type of memory had the highest impact on a group's path tortuosity and cohesion. Using simulation studies as experimental trials to test theories of spatial memory use allows the development of insight into the behavioral mechanisms behind animal movement, developing case-specific results, as well as general results informing how changes to perception and behavior influence movement patterns.
Resumo:
Knowing the timing, level, cellular localization, and cell type that a gene is expressed in contributes to our understanding of the function of the gene. Each of these features can be accomplished with in situ hybridization to mRNAs within cells. Here we present a radioactive in situ hybridization method modified from Clayton et al. (1988)(1) that has been working successfully in our lab for many years, especially for adult vertebrate brains(2-5). The long complementary RNA (cRNA) probes to the target sequence allows for detection of low abundance transcripts(6,7). Incorporation of radioactive nucleotides into the cRNA probes allows for further detection sensitivity of low abundance transcripts and quantitative analyses, either by light sensitive x-ray film or emulsion coated over the tissue. These detection methods provide a long-term record of target gene expression. Compared with non-radioactive probe methods, such as DIG-labeling, the radioactive probe hybridization method does not require multiple amplification steps using HRP-antibodies and/or TSA kit to detect low abundance transcripts. Therefore, this method provides a linear relation between signal intensity and targeted mRNA amounts for quantitative analysis. It allows processing 100-200 slides simultaneously. It works well for different developmental stages of embryos. Most developmental studies of gene expression use whole embryos and non-radioactive approaches(8,9), in part because embryonic tissue is more fragile than adult tissue, with less cohesion between cells, making it difficult to see boundaries between cell populations with tissue sections. In contrast, our radioactive approach, due to the larger range of sensitivity, is able to obtain higher contrast in resolution of gene expression between tissue regions, making it easier to see boundaries between populations. Using this method, researchers could reveal the possible significance of a newly identified gene, and further predict the function of the gene of interest.
Resumo:
OBJECTIVE: In this prospective, longitudinal study of young children, we examined whether a history of preschool generalized anxiety, separation anxiety, and/or social phobia is associated with amygdala-prefrontal dysregulation at school-age. As an exploratory analysis, we investigated whether distinct anxiety disorders differ in the patterns of this amygdala-prefrontal dysregulation. METHODS: Participants were children taking part in a 5-year study of early childhood brain development and anxiety disorders. Preschool symptoms of generalized anxiety, separation anxiety, and social phobia were assessed with the Preschool Age Psychiatric Assessment (PAPA) in the first wave of the study when the children were between 2 and 5 years old. The PAPA was repeated at age 6. We conducted functional MRIs when the children were 5.5 to 9.5 year old to assess neural responses to viewing of angry and fearful faces. RESULTS: A history of preschool social phobia predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces. Preschool generalized anxiety predicted less functional connectivity between the amygdala and dorsal prefrontal cortices in response to fearful faces. Finally, a history of preschool separation anxiety predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces and greater school-age functional connectivity between the amygdala and dorsal prefrontal cortices to angry faces. CONCLUSIONS: Our results suggest that there are enduring neurobiological effects associated with a history of preschool anxiety, which occur over-and-above the effect of subsequent emotional symptoms. Our results also provide preliminary evidence for the neurobiological differentiation of specific preschool anxiety disorders.
Resumo:
Geospatial modeling is one of the most powerful tools available to conservation biologists for estimating current species ranges of Earth's biodiversity. Now, with the advantage of predictive climate models, these methods can be deployed for understanding future impacts on threatened biota. Here, we employ predictive modeling under a conservative estimate of future climate change to examine impacts on the future abundance and geographic distributions of Malagasy lemurs. Using distribution data from the primary literature, we employed ensemble species distribution models and geospatial analyses to predict future changes in species distributions. Current species distribution models (SDMs) were created within the BIOMOD2 framework that capitalizes on ten widely used modeling techniques. Future and current SDMs were then subtracted from each other, and areas of contraction, expansion, and stability were calculated. Model overprediction is a common issue associated Malagasy taxa. Accordingly, we introduce novel methods for incorporating biological data on dispersal potential to better inform the selection of pseudo-absence points. This study predicts that 60% of the 57 species examined will experience a considerable range of reductions in the next seventy years entirely due to future climate change. Of these species, range sizes are predicted to decrease by an average of 59.6%. Nine lemur species (16%) are predicted to expand their ranges, and 13 species (22.8%) distribution sizes were predicted to be stable through time. Species ranges will experience severe shifts, typically contractions, and for the majority of lemur species, geographic distributions will be considerably altered. We identify three areas in dire need of protection, concluding that strategically managed forest corridors must be a key component of lemur and other biodiversity conservation strategies. This recommendation is all the more urgent given that the results presented here do not take into account patterns of ongoing habitat destruction relating to human activities.
Resumo:
Even though the etiology of chronic rejection (CR) is multifactorial, donor specific antibody (DSA) is considered to have a causal effect on CR development. Currently the antibody-mediated mechanisms during CR are poorly understood due to lack of proper animal models and tools. In a clinical setting, we previously demonstrated that induction therapy by lymphocyte depletion, using alemtuzumab (anti-human CD52), is associated with an increased incidence of serum alloantibody, C4d deposition and antibody-mediated rejection in human patients. In this study, the effects of T cell depletion in the development of antibody-mediated rejection were examined using human CD52 transgenic (CD52Tg) mice treated with alemtuzumab. Fully mismatched cardiac allografts were transplanted into alemtuzumab treated CD52Tg mice and showed no acute rejection while untreated recipients acutely rejected their grafts. However, approximately half of long-term recipients showed increased degree of vasculopathy, fibrosis and perivascular C3d depositions at posttransplant day 100. The development of CR correlated with DSA and C3d deposition in the graft. Using novel tracking tools to monitor donor-specific B cells, alloreactive B cells were shown to increase in accordance with DSA detection. The current animal model could provide a means of testing strategies to understand mechanisms and developing therapeutic approaches to prevent chronic rejection.