975 resultados para Direct synthesis
Resumo:
A highly efficient synthesis of the biologically important fluorescent probe dansyl α-GalCer is presented. Key in our strategy is the incorporation of the fluorescent dansyl group at an early stage in the synthesis to facilitate in the monitoring and purification of intermediates via TLC and flash column chromatography, respectively, and the use of a high yielding α-selective glycosylation reaction between the phytosphingosine lipid and a galactosyl iodide donor. The ability of dansyl α-GalCer to activate iNKT cells and to serve as a fluorescent marker for the uptake of glycolipid by dendritic cells is also presented.
Resumo:
Use of angiotensin (Ang) II AT1 receptor antagonists for treatment of hypertension is rapidly increasing, yet direct comparisons of the relative efficacy of antagonists to block the renin-angiotensin system in humans are lacking. In this study, the Ang II receptor blockade induced by the recommended starting dose of 3 antagonists was evaluated in normotensive subjects in a double-blind, placebo-controlled, randomized, 4-way crossover study. At 1-week intervals, 12 subjects received a single dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), or placebo. Blockade of the renin-angiotensin system was assessed before and 4, 24, and 30 hours after drug intake by 3 independent methods: inhibition of the blood pressure response to exogenous Ang II, in vitro Ang II receptor assay, and reactive changes in plasma Ang II levels. At 4 hours, losartan blocked 43% of the Ang II-induced systolic blood pressure increase; valsartan, 51%; and irbesartan, 88% (P<0.01 between drugs). The effect of each drug declined with time. At 24 hours, a residual effect was found with all 3 drugs, but at 30 hours, only irbesartan induced a marked, significant blockade versus placebo. Similar results were obtained when Ang II receptor blockade was assessed with an in vitro receptor assay and by the reactive rise in plasma Ang II levels. This study thus demonstrates that the first administration of the recommended starting dose of irbesartan induces a greater and longer lasting Ang II receptor blockade than that of valsartan and losartan in normotensive subjects.
Resumo:
An impaired glutathione (GSH) synthesis was observed in several multifactorial diseases, including schizophrenia and myocardial infarction. Genetic studies revealed an association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the catalytic subunit (GCLC) of the glutamate cysteine ligase (GCL). Disease-associated genotypes of this polymorphism correlated with a decrease in GCLC protein expression, GCL activity and GSH content. To clarify consequences of a decreased GCL activity at the proteome level, three schizophrenia patients and three controls have been selected based on the GCLC GAG TNR polymorphism. Fibroblast cultures were obtained by skin biopsy and were challenged with tert-butylhydroquinone (t-BHQ), a substance known to induce oxidative stress. Proteome changes were analyzed by two dimensional gel electrophoresis (2-DE) and results revealed 10 spots that were upregulated in patients following t-BHQ treatment, but not in controls. Nine corresponding proteins could be identified by MALDI mass spectrometry and these proteins are involved in various cellular functions, including energy metabolism, oxidative stress response, and cytoskeletal reorganization. In conclusion, skin fibroblasts of subjects with an impaired GSH synthesis showed an altered proteome reaction in response to oxidative stress. Furthermore, the study corroborates the use of fibroblasts as an additional mean to study vulnerability factors of psychiatric diseases.
Resumo:
A directory of Direct Care Entities in Iowa, by type of service, number of facilities and number of beds available.
Resumo:
The synthesis of a photoreactive derivative of the human leukocyte antigen-A1 (HLA-A1)-restricted MAGE-1 peptide 161-169 (EADPTGHSY) is described. Using conventional automated solid-phase peptide synthesis, a photoreactive derivative of this peptide was synthesized by replacing histidine-167 with photo-reactive N-beta-4-azidosalicyloyl-L-2,3-diaminopropionic acid. The C-terminal tyrosine was incorporated as phosphotyrosine. This peptide derivative was radioiodinated in the presence of chloramine T. This iodination took place selectively at the photoreactive group, because the phosphate ester prevented tyrosine iodination. Following dephosphorylation with alkaline phosphatase and chromatographic purification, the radiolabeled peptide derivative was incubated with cells expressing HLA-A1 or other HLA molecules. Photoactivation resulted in efficient photoaffinity labeling of HLA-A1. Other HLA molecules or other cellular components were not detectably labeled. This labeling was inhibited by HLA-A1 but not by HLA-A2-binding peptides. This synthesis is generally applicable and can also be adapted to the synthesis of well-defined radiolabeled nonphotoreactive peptide derivatives.
Resumo:
To determine the type and the relative amount of prostaglandins (PGs) synthesized by various neural tissues, homogenates of meninges, dorsal root ganglia (DRG) capsules, decapsulated DRG, and unsheathed sciatic nerves were incubated with [1-14C]arachidonic acid. Homogenates of cultured cells (meningeal cells, fibroblasts, and nonneuronal or neuronal DRG cells) were used to specify the cells producing particular PGs. The highest synthetic capacity was found in fibroblast-rich tissues (meninges and DRG capsules) and in cultures of meningeal cells or fibroblasts. Two major cyclooxygenase products were formed: [14C]PGE2 and an unusual 14C-labeled compound, Y. The accumulation of compound Y, corresponding probably to 15-hydroperoxy PGE2, was completely impaired by addition of exogenous GSH, which conversely enhanced the synthesis of [14C]PGE2 and promoted the formation of [14C]PGD2. In contrast, decapsulated DRG or unsheathed sciatic nerves displayed a 10-20 times lower capacity to synthesize PGs than fibroblast-rich tissues and produced mainly [14C]PGE2 and [14C]PGD2. In this case, [14C]PGE2 or [14C]PGD2 synthesis was neither enhanced nor promoted by addition of exogenous GSH. Neuron-enriched DRG cell cultures allowed us to specify that [14C]PGD2 is the major prostanoid produced by primary sensory neurons as compared with nonneuronal DRG cells. Because PGD2 synthesis in DRG and more specifically in DRG neurons does not depend on exogenous GSH and differs from PGD2 synthesis in fibroblast-rich tissues, it is concluded that at least two distinct enzymatic processes contribute to PGD2 formation in the nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Analiza el estado de la fisiología del fitoplancton de las aguas costeras cercanas a Perú
Resumo:
This paper investigates the timing of foreign direct investment (FDI) in the banking sector. The importance of this issue would arise from the existence of differential benefits associated to be the first entrant in a foreign location. Nevertheless, when uncertainty is considered, the existence of some Ownership-Location-Internalization (OLI) advantages can make FDI less reversible and/or more delayable and therefore it may be optimal for the firm to delay the investment until the uncertainty is resolved. In this paper, the nature of OLI advantages in the banking sector has been examined in order to propose a prognostic model of the timing of foreign direct investment. The model is then tested for the Spanish case using duration analysis.
Resumo:
We analyze a model where a multinational firm can use its superiortechnology in a foreign subsidiary only after appropriate trainingof local managers. Technological spillovers from foreign directinvestment arise when such managers are later hired by a localfirm. Benefits for the host economy may also take the form of therent that trained managers receive by the foreign affiliate toprevent them from moving to local competitors. We study conditionsunder which technological spillovers occur. We also show that undercertain circumstances the multinational firm might find it optimalto resort to export instead of foreign direct investment, to avoiddissipation of its intangible assets.
Resumo:
The purpose of this study was to determine the impact of axial traction during acquisition of direct magnetic resonance (MR) arthrography examination of the knee in terms of joint space width and amount of contrast material between the cartilage surfaces. Direct knee MR arthrography was performed in 11 patients on a 3-T MR imaging unit using a T1-weighted isotropic gradient echo sequence in a coronal plane with and without axial traction of 15 kg. Joint space widths were measured at the level of the medial and the lateral femorotibial joint with and without traction. The amount of contrast material in the medial and lateral femorotibial joint was assessed independently by two musculoskeletal radiologists in a semiquantitative manner using three grades ('absence of surface visualization, 'partial surface visualization or 'complete surface visualization'). With traction, joint space width increased significantly at the lateral femorotibial compartment (mean = 0.55 mm, p = 0.0105) and at the medial femorotibial compartment (mean = 0.4 mm, p = 0.0124). There was a trend towards an increased amount of contrast material in the femorotibial compartment with axial traction. Direct MR arthrography of the knee with axial traction showed a slight and significant increase of the width of the femorotibial compartment with a trend towards more contrast material between the articular cartilage surfaces.
Resumo:
The shape of supercoiled DNA molecules in solution is directly visualized by cryo-electron microscopy of vitrified samples. We observe that: (i) supercoiled DNA molecules in solution adopt an interwound rather than a toroidal form, (ii) the diameter of the interwound superhelix changes from about 12 nm to 4 nm upon addition of magnesium salt to the solution and (iii) the partition of the linking deficit between twist and writhe can be quantitatively determined for individual molecules.
Resumo:
Glycogen synthase 2 (Gys-2) is the ratelimiting enzyme in the storage of glycogen in liver and adipose tissue, yet little is known about regulation of Gys-2 transcription. The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of lipid and glucose metabolism and might be hypothesized to govern glycogen synthesis as well. Here, we show that Gys-2 is a direct target gene of PPARalpha, PPARbeta/delta and PPARgamma. Expression of Gys-2 is significantly reduced in adipose tissue of PPARalpha-/-, PPARbeta/delta-/- and PPARgamma+/- mice. Furthermore, synthetic PPARbeta/delta, and gamma agonists markedly up-regulate Gys-2 mRNA and protein expression in mouse 3T3-L1 adipocytes. In liver, PPARalpha deletion leads to decreased glycogen levels in the refed state, which is paralleled by decreased expression of Gys-2 in fasted and refed state. Two putative PPAR response elements (PPREs) were identified in the mouse Gys-2 gene: one in the upstream promoter (DR-1prom) and one in intron 1 (DR-1int). It is shown that DR-1int is the response element for PPARs, while DR-1prom is the response element for Hepatic Nuclear Factor 4 alpha (HNF4alpha). In adipose tissue, which does not express HNF4alpha, DR-1prom is occupied by PPARbeta/delta and PPARgamma, yet binding does not translate into transcriptional activation of Gys-2. Overall, we conclude that mouse Gys-2 is a novel PPAR target gene and that transactivation by PPARs and HNF4alpha is mediated by two distinct response elements.
Resumo:
The granule/perforin exocytosis model of CTL mediated cytolysis proposes that CTL, upon recognition of the specific targets, release the cytolytic, pore-forming protein perforin into the intercellular space which then mediates the cytotoxic effect. However, direct evidence for the involvement of perforin is still lacking, and indeed, recent results even seem incompatible with the model. To determine directly the role of perforin in CTL cytotoxicity, perforin antisense oligonucleotides were exogenously added during the stimulation of mouse spleen derived T cells and human peripheral blood lymphocytes (PBL), respectively. Perforin protein expression in lymphocytes was reduced by up to 65%, and cytotoxicity of stimulated T cells by as much as 69% (5.7-fold). These results provide the first experimental evidence for a crucial role of perforin in lymphocyte mediated cytotoxicity.
Resumo:
Two-dimensional aperture synthesis radiometry is the technologyselected for ESA's SMOS mission to provide high resolution L-bandradiometric imagery. The array topology is a Y-shaped structure. Theposition and number of redundant elements to minimise instrumentdegradation in case of element failure(s) are studied.