923 resultados para Direct method
Resumo:
For the analysis of material nonlinearity, an effective shear modulus approach based on the strain control method is proposed in this paper by using point collocation method. Hencky’s total deformation theory is used to evaluate the effective shear modulus, Young’s modulus and Poisson’s ratio, which are treated as spatial field variables. These effective properties are obtained by the strain controlled projection method in an iterative manner. To evaluate the second order derivatives of shape function at the field point, the radial basis function (RBF) in the local support domain is used. Several numerical examples are presented to demonstrate the efficiency and accuracy of the proposed method and comparisons have been made with analytical solutions and the finite element method (ABAQUS).
Resumo:
Objective: Parental illness (PI) may have adverse impacts on youth and family functioning. Research in this area has suffered from the absence of a guiding comprehensive framework. This study tested a conceptual model of the effects of PI on youth and family functioning derived from the Family Ecology Framework (FEF; Pedersen & Revenson, 2005). Method. A total of 85 parents with multiple sclerosis and 127 youth completed questionnaires at Time 1 and 12 months later at Time 2. Results. Structural equation modeling results supported the FEF with regards to physical-illness disability. Specifically, the proposed mediators (role redistribution, stress, and stigma) were implicated in the processes that link parental disability to several domains of youth adjustment. The results suggest that the effects of parental depression (PD) are not mediated through these processes; rather, PD directly affects family functioning, which in turn mediates the effects onto youth adjustment. Family functioning further mediated between PD and youth well-being and behavioral-social difficulties. Conclusions. Although results support the effects of parental-illness disability on youth and family functioning via the proposed mediational mechanisms, the additive effects of PD on youth physical and mental health occur through direct and indirect (via family functioning) pathways, respectively.
Resumo:
Magnetohydrodynamic (MHD) natural convection laminar flow from an iso-thermal horizontal circular cylinder immersed in a fluid with viscosity proportional to a linear function of temperature will be discussed with numerical simulations. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equa-tions are reduced to convenient form, which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distributions of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of magnetohydrodynamic parameter, viscosity-variation parameter and viscous dissipation parameter. MHD flow in this geometry with temperature dependent viscosity is absent in the literature. The results obtained from the numerical simulations have been veri-fied by two methodologies.
Resumo:
In response to the need to leverage private finance and the lack of competition in some parts of the Australian public sector infrastructure market, especially in the very large economic infrastructure sector procured using Pubic Private Partnerships, the Australian Federal government has demonstrated its desire to attract new sources of in-bound foreign direct investment (FDI). This paper aims to report on progress towards an investigation into the determinants of multinational contractors’ willingness to bid for Australian public sector major infrastructure projects. This research deploys Dunning’s eclectic theory for the first time in terms of in-bound FDI by multinational contractors into Australia. Elsewhere, the authors have developed Dunning’s principal hypothesis to suit the context of this research and to address a weakness arising in this hypothesis that is based on a nominal approach to the factors in Dunning's eclectic framework and which fails to speak to the relative explanatory power of these factors. In this paper, a first stage test of the authors' development of Dunning's hypothesis is presented by way of an initial review of secondary data vis-à-vis the selected sector (roads and bridges) in Australia (as the host location) and with respect to four selected home countries (China; Japan; Spain; and US). In doing so, the next stage in the research method concerning sampling and case studies is also further developed and described in this paper. In conclusion, the extent to which the initial review of secondary data suggests the relative importance of the factors in the eclectic framework is considered. It is noted that more robust conclusions are expected following the future planned stages of the research including primary data from the case studies and a global survey of the world’s largest contractors and which is briefly previewed. Finally, and beyond theoretical contributions expected from the overall approach taken to developing and testing Dunning’s framework, other expected contributions concerning research method and practical implications are mentioned.
Resumo:
We present an iterative hierarchical algorithm for multi-view stereo. The algorithm attempts to utilise as much contextual information as is available to compute highly accurate and robust depth maps. There are three novel aspects to the approach: 1) firstly we incrementally improve the depth fidelity as the algorithm progresses through the image pyramid; 2) secondly we show how to incorporate visual hull information (when available) to constrain depth searches; and 3) we show how to simultaneously enforce the consistency of the depth-map by continual comparison with neighbouring depth-maps. We show that this approach produces highly accurate depth-maps and, since it is essentially a local method, is both extremely fast and simple to implement.
Resumo:
This paper presents a strategy for delayed research method selection in a qualitative interpretivist research. An exemplary case details how explorative interviews were designed and conducted in accordance with a paradigm prior to deciding whether to adopt grounded theory or phenomenology for data analysis. The focus here is to determine the most appropriate research strategy in this case the methodological framing to conduct research and represent findings, both of which are detailed. Research addressing current management issues requires both a flexible framework and the capability to consider the research problem from various angles, to derive tangible results for academia with immediate application to business demands. Researchers, and in particular novices, often struggle to decide on an appropriate research method suitable to address their research problem. This often applies to interpretative qualitative research where it is not always immediately clear which is the most appropriate method to use, as the research objectives shift and crystallize over time. This paper uses an exemplary case to reveal how the strategy for delayed research method selection contributes to deciding whether to adopt grounded theory or phenomenology in the initial phase of a PhD research project. In this case, semi-structured interviews were used for data generation framed in an interpretivist approach, situated in a business context. Research questions for this study were thoroughly defined and carefully framed in accordance with the research paradigm‟s principles, while at the same time ensuring that the requirements of both potential research methods were met. The grounded theory and phenomenology methods were compared and contrasted to determine their suitability and whether they meet the research objectives based on a pilot study. The strategy proposed in this paper is an alternative to the more „traditional‟ approach, which initially selects the methodological formulation, followed by data generation. In conclusion, the suggested strategy for delayed research method selection intends to help researchers identify and apply the most appropriate method to their research. This strategy is based on explorations of data generation and analysis in order to derive faithful results from the data generated.
Resumo:
Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel beam produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It has the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. Although the LSB sections are commonly used as flexural members, no research has been undertaken on the shear behaviour of LSBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs. In this research finite element models of LSBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. They were validated by comparing their results with available experimental results. The models provided full details of the shear buckling and strength characteristics of LSBs, and showed the presence of considerable improvements to web shear buckling in LSBs and associated post-buckling strength. This paper presents the details of the finite element models of LSBs and the results. Both finite element analysis and experimental results showed that the current design rules in cold-formed steel codes are very conservative for the shear design of LSBs. The ultimate shear capacities from finite element analyses confirmed the accuracy of proposed shear strength equations for LSBs based on the North American specification and DSM design equations. Developed finite element models were used to investigate the reduction to shear capacity of LSBs when full height web side plates were not used or when only one web side plate was used, and these results are also presented in this paper.
Resumo:
Abstract: The LiteSteel Beam (LSB) is a new cold-formed hollow flange channel section produced using dual electric resistance welding and automated continuous roll-forming technologies. The innovative LSB sections have many beneficial characteristics and are commonly used as flexural members in building construction. However, limited research has been undertaken on the shear behaviour of LSBs. Therefore a detailed investigation including both numerical and experimental studies was undertaken to investigate the shear behaviour of LSBs. Finite element models of LSBs in shear were developed to simulate the nonlinear ultimate strength behaviour of LSBs including their elastic buckling characteristics, and were validated by comparing their results with experimental test results. Validated finite element models were then used in a detailed parametric study into the shear behaviour of LSBs. The parametric study results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LSBs. Significant improvements to web shear buckling occurred due to the presence of torsionally rigid rectangular hollow flanges while considerable post-buckling strength was also observed. This paper therefore proposes improved shear strength design rules for LSBs within the current cold-formed steel code guidelines. It presents the details of the parametric study and the new shear strength equations. The new equations were also developed based on the direct strength method. The proposed shear strength equations have the potential to be used with other conventional cold-formed steel sections such as lipped channel sections.
Resumo:
The accuracy of marker placement on palpable surface anatomical landmarks is an important consideration in biomechanics. Although marker placement reliability has been studied in some depth, it remains unclear whether or not the markers are accurately positioned over the intended landmark in order to define the static position and orientation of the segment. A novel method using commonly available X-ray imaging was developed to identify the accuracy of markers placed on the shoe surface by palpating landmarks through the shoe. An anterior–posterior and lateral–medial X-ray was taken on 24 participants with a newly developed marker set applied to both the skin and shoe. The vector magnitude of both skin- and shoe-mounted markers from the anatomical landmark was calculated, as well as the mean marker offset between skin- and shoe-mounted markers. The accuracy of placing markers on the shoe relative to the skin-mounted markers, accounting for shoe thickness, was less than 5mm for all markers studied. Further, when using the developed guidelines provided in this study, the method was deemed reliable (Intra-rater ICCs¼0.50–0.92). In conclusion, the method proposed here can reliably assess marker placement accuracy on the shoe surface relative to chosen anatomical landmarks beneath the skin.
Resumo:
In recent years, the advent of new tools for musculoskeletal simulation has increased the potential for significantly improving the ergonomic design process and ergonomic assessment of design. In this paper we investigate the use of one such tool, ‘The AnyBody Modeling System’, applied to solve a one-parameter and yet, complex ergonomic design problem. The aim of this paper is to investigate the potential of computer-aided musculoskeletal modelling in the ergonomic design process, in the same way as CAE technology has been applied to engineering design.
Resumo:
When used as floor joists, the new mono-symmetric LiteSteel beam (LSB) sections require web openings to provide access for inspections and various services. The LSBs consist of two rectangular hollow flanges connected by a slender web, and are subjected to lateral distortional buckling effects in the intermediate span range. Their member capacity design formulae developed to date are based on their elastic lateral buckling moments, and only limited research has been undertaken to predict the elastic lateral buckling moments of LSBs with web openings. This paper addresses this research gap by reporting the development of web opening modelling techniques based on an equivalent reduced web thickness concept and a numerical method for predicting the elastic buckling moments of LSBs with circular web openings. The proposed numerical method was based on a formulation of the total potential energy of LSBs with circular web openings. The accuracy of the proposed method’s use with the aforementioned modelling techniques was verified through comparison of its results with those of finite strip and finite element analyses of various LSBs.
Resumo:
The LiteSteel Beam (LSB) is an innovative cold-formed steel hollow flange section. When used as floor joists, the LSB sections require holes in the web to provide access for various services. In this study a detailed investigation was undertaken into the elastic lateral distortional buckling behaviour of LSBs with circular web openings subjected to a uniform moment using finite element analysis. Validated ideal finite element models were used first to study the effect of web holes on their elastic lateral distortional buckling behaviour. An equivalent web thickness method was then proposed using four different equations for the elastic buckling analyses of LSBs with web holes. It was found that two of them could be successfully used with approximate numerical models based on solid web elements with an equivalent reduced thickness to predict the elastic lateral distortional buckling moments.
Resumo:
The paper introduces the underlying principles and the general features of a meta-method (MAP method) developed as part of and used in various research, education and professional development programmes at ESC Lille. This method aims at providing effective and efficient structure and process for acting and learning in various complex, uncertain and ambiguous managerial situations (projects, programmes, portfolios). The paper is developed around three main parts. First, I suggest revisiting the dominant vision of the project management knowledge field, based on the assumptions they are not addressing adequately current business and management contexts and situations, and that competencies in management of entrepreneurial activities are the sources of creation of value for organisations. Then, grounded on the former developments, I introduce the underlying concepts supporting MAP method seen as a ‘convention generator’ and how this meta method inextricably links learning and practice in addressing managerial situations. Finally, I briefly describe an example of application, illustrating with a case study how the method integrates Project Management Governance, and give few examples of use in Management Education and Professional Development.
Resumo:
The paper introduces the underlying principles and the general features of a meta-method (MAP method – Management & Analysis of Projects) developed as part of and used in various research, education and professional development programmes at ESC Lille. This method aims at providing effective and efficient structure and process for acting and learning in various complex, uncertain and ambiguous managerial situations (projects, programmes, portfolios). The paper is organized in three parts. In a first part, I propose to revisit the dominant vision of the project management knowledge field, based on the assumptions they are not addressing adequately current business and management contexts and situations, and that competencies in management of entrepreneurial activities are the sources of creation of value for organisations. Then, grounded on the new suggested perspective, the second part presents the underlying concepts supporting MAP method seen as a ‘convention generator' and how this meta-method inextricably links learning and practice in addressing managerial situations. The third part describes example of application, illustrating with a brief case study how the method integrates Project Management Governance, and gives few examples of use in Management Education and Professional Development.
Resumo:
Increasing global competitiveness worldwide has forced manufacturing organizations to produce high-quality products more quickly and at a competitive cost which demand of continuous improvements techniques. In this paper, we propose a fuzzy based performance evaluation method for lean supply chain. To understand the overall performance of cost competitive supply chain, we investigate the alignment of market strategy and position of the supply chain. Competitive strategies can be achieved by using a different weight calculation for different supply chain situations. By identifying optimal performance metrics and applying performance evaluation methods, managers can predict the overall supply chain performance under lean strategy.