952 resultados para Diffusion and lntermittency
Resumo:
Small-bowel MRI based on contrast-enhanced T1-weighted sequences has been challenged by diffusion-weighted imaging (DWI) for detection of inflammatory bowel lesions and complications in patients with Crohn disease.
Resumo:
Extracranial applications of diffusion-weighted (DW) magnetic resonance (MR) imaging are gaining increasing importance, including in head and neck radiology. The main indications for performing DW imaging in this relatively small but challenging region of the body are tissue characterization, nodal staging, therapy monitoring, and early detection of treatment failure by differentiating recurrence from posttherapeutic changes. Lower apparent diffusion coefficients (ADCs) have been reported in the head and neck region of adults and children for most malignant lesions, as compared with ADCs of benign lesions. For nodal staging, DW imaging has shown promise in helping detect lymph node metastases, even in small (subcentimeter) nodes with lower ADCs, as compared with normal or reactive nodes. Follow-up of early response to treatment is reflected in an ADC increase in the primary tumor and nodal metastases; whereas nonresponding lesions tend to reveal only a slight increase or even a decrease in ADC during follow-up. Optimization and standardization of DW imaging technical parameters, comparison of DW images with morphologic images, and increasing experience, however, are prerequisites for successful application of this challenging technique in the evaluation of various head and neck pathologic conditions.
Resumo:
Purpose: To assess possible association between intrinsic structural damage and clinical disability by correlating spinal cord diffusion-tensor (DT) imaging data with electrophysiological parameters in patients with a diagnosis of multiple sclerosis (MS). Materials and Methods: This study was approved by the local ethical committee according to the declaration of Helsinki and written informed consent was obtained. DT images and T1- and T2-weighted images of the spinal cord were acquired in 28 healthy volunteers and 41 MS patients. Fractional anisotropy (FA) and apparent diffusion coefficients were evaluated in normal-appearing white matter (NAWM) at the cervical level and were correlated with motor-evoked potentials (n = 34). Asymmetry index was calculated for FA values with corresponding left and right regions of interest as percentage of the absolute difference between these values relative to the sum of the respective FA values. Statistical analysis included Spearman rank correlations, Mann-Whitney test, and reliability analysis. Results: Healthy volunteers had low asymmetry index (1.5%-2.2%). In MS patients, structural abnormalities were reflected by asymmetric decrease of FA (asymmetry index: 3.6%; P = .15). Frequently asymmetrically affected among MS patients was left and right central motor conduction time (CMCT) to abductor digiti minimi muscle (ADMM) (asymmetry index, 15%-16%) and tibialis anterior muscle (TAM) (asymmetry index, 9.5%-14.1%). Statistically significant correlations of functional (ie, electrophysiological) and structural (ie, DT imaging) asymmetries were found (P = .005 for CMCT to ADMM; P = .007 for CMCT to TAM) for the cervical lateral funiculi, which comprise the crossed pyramidal tract. Interobserver reliability for DT imaging measurements was excellent (78%-87%). Conclusion: DT imaging revealed asymmetric anatomic changes in spinal cord NAWM, which corresponded to asymmetric electrophysiological deficits for both arms and legs, and reflected a specific structure-function relationship in the human spinal cord. © RSNA, 2013.
Resumo:
This study aims to investigate the relationship between regional connectivity in the brain white matter and the presence of psychotic personality traits, in healthy subjects with psychotic traits. Thirteen healthy controls were administered the MMPI-2, to assess psychotic traits and, according to MMPI results, a dichotomization into a group of "high-psychotic" and "low-psychotic" was performed. Diffusion tensor imaging (DTI) was used as a non-invasive measure, in order to obtain information about the fractional anisotropy (FA), an intravoxel index of local connectivity and, by means of a voxelwise approach, the between-group differences of the FA values were calculated. The "high-psychotic" group showed higher FA in the left arcuate fasciculus. Subjects with low scores for psychotic traits had significantly higher FA in the corpus callosum, right arcuate fasciculus, and fronto-parietal fibers. In line with previous brain imaging studies of schizophrenia spectrum disorders, our results suggest that psychotic personality traits are related to altered connectivity and brain asymmetry.
Resumo:
A multimodal MR study including relaxometry, diffusion tensor imaging (DTI), and MR spectroscopy was performed on patients with classical phenylketonuria (PKU) and matched controls, to improve our understanding of white matter (WM) lesions. Relaxometry yields information on myelin loss or malformation and may substantiate results from DTI attributed to myelin changes. Relaxometry was used to determine four brain compartments in normal-appearing brain tissue (NABT) and in lesions: water in myelin bilayers (myelin water, MW), water in gray matter (GM), water in WM, and water with long relaxation times (cerebrospinal fluid [CSF]-like signals). DTI yielded apparent diffusion coefficients (ADCs) and fractional anisotropies. MW and WM content were reduced in NABT and in lesions of PKU patients, while CSF-like signals were significantly increased. ADC values were reduced in PKU lesions, but also in the corpus callosum. Diffusion anisotropy was reduced in lesions because of a stronger decrease in the longitudinal than in the transverse diffusion. WM content and CSF-like components in lesions correlated with anisotropy and ADC. ADC values in lesions and in the corpus callosum correlated negatively with blood and brain phenylalanine (Phe) concentrations. Intramyelinic edema combined with vacuolization is a likely cause of the WM alterations. Correlations between diffusivity and Phe concentrations confirm vulnerability of WM to high Phe concentrations.
Resumo:
PURPOSE: To evaluate and compare the efficacy of proximal versus distal embolus protection devices (EPD) during carotid artery angioplasty/stenting (CAS) based on diffusion-weighted magnetic resonance imaging (DW-MRI). METHODS: Forty-four patients (31 men; mean age 68 years, range 48-85) underwent protected CAS and had DW-MRI before and after the intervention. The cohort was analyzed according to the type of EPD used: a proximal EPD was deployed in 25 (56.8%) patients (17 men; mean age 66 years, range 48-85) and a distal filter in 19 (14 men; mean age 70 years, range 58-79). Fifteen (60.0%) patients with proximal protection were symptomatic of the target lesion; in the distal protection group, 10 (52.6%) were symptomatic. RESULTS: New lesions were seen on the postinterventional DW-MRI in 28.0% (7/25) of the proximal EPD group versus 32.6% (6/19) of those with a distal filter (p = NS). The majority were clinically silent. The new lesions in the vascular territory of the stented carotid artery in the group as a whole and per patient were fewer in the proximal EPD group (p = NS). No significant differences were noted in the T(2) appearance of the new lesions or the number of new lesions observed away from the vascular territory of the stented artery. CONCLUSION: Proximal embolus protection devices show a nonsignificant trend toward fewer embolic events, which warrants large-scale studies. Furthermore, proximal protection devices can be useful to control and treat acute in-stent thrombosis.
Resumo:
In a technical development study approved by the institutional ethics committee, the feasibility of fast diffusion-weighted imaging as a replacement for conventional magnetic resonance (MR) imaging sequences (short inversion time inversion recovery [STIR] and T1-weighted spin echo [SE]) and positron emission tomography (PET)/computed tomography (CT) in the detection of skeletal metastases from prostate cancer was evaluated. MR imaging and carbon 11 ((11)C) choline PET/CT data from 11 consecutive prostate cancer patients with bone metastases were analyzed. Diffusion-weighted imaging appears to be equal, if not superior, to STIR and T1-weighted SE sequences and equally as effective as (11)C-choline PET/CT in detection of bone metastases in these patients. Diffusion-weighted imaging should be considered for further evaluation and comparisons with PET/CT for comprehensive whole-body staging and restaging in prostate and other cancers.
Resumo:
BACKGROUND: Lymph node staging of bladder or prostate cancer using conventional imaging is limited. Newer approaches such as ultrasmall superparamagnetic particles of iron oxide (USPIO) and diffusion-weighted magnetic resonance imaging (DW-MRI) have inconsistent diagnostic accuracy and are difficult to interpret. OBJECTIVE: To assess whether combined USPIO and DW-MRI (USPIO-DW-MRI) improves staging of normal-sized lymph nodes in bladder and/or prostate cancer patients. DESIGN, SETTING, AND PARTICIPANTS: Twenty-one consecutive patients with bladder and/or prostate cancer were enrolled between May and October 2008. One patient was excluded secondary to bone metastases detected on DW-MRI with subsequent abstention from surgery. INTERVENTION: Patients preoperatively underwent 3-T MRI before and after administration of lymphotropic USPIO using conventional MRI sequences combined with DW-MRI. Surgery consisted of extended pelvic lymphadenectomy and resection of primary tumors. MEASUREMENTS: Diagnostic accuracies of the new combined USPIO-DW-MRI approach compared with the "classic" reading method evaluating USPIO images without and with DW-MRI versus histopathology were evaluated. Duration of the two reading methods was noted for each patient. RESULTS AND LIMITATIONS: Diagnostic accuracy (90% per patient or per pelvic side) was comparable for the classic and the USPIO-DW-MRI reading method, while time of analysis with 80 min (range 45-180 min) for the classic and 13 min (range 5-90 min) for the USPIO-DW-MRI method was significantly shorter (p<0.0001). Interobserver agreement (three blinded readers) was high with a kappa value of 0.75 and 0.84, respectively. Histopathological analysis showed metastases in 26 of 802 analyzed lymph nodes (3.2%). Of these, 24 nodes (92%) were correctly diagnosed as positive on USPIO-DW-MRI. In two patients, one micrometastasis each (1.0x0.2 mm; 0.7x0.4 mm) was missed in all imaging studies. CONCLUSIONS: USPIO-DW-MRI is a fast and accurate method for detecting pelvic lymph node metastases, even in normal-sized nodes of bladder or prostate cancer patients.
Resumo:
OBJECTIVE: The aim of the present pilot study is to show initial results of a multimodal approach using clinical scoring, morphological magnetic resonance imaging (MRI) and biochemical T2-relaxation and diffusion-weighted imaging (DWI) in their ability to assess differences between cartilage repair tissue after microfracture therapy (MFX) and matrix-associated autologous chondrocyte transplantation (MACT). METHOD: Twenty patients were cross-sectionally evaluated at different post-operative intervals from 12 to 63 months after MFX and 12-59 months after MACT. The two groups were matched by age (MFX: 36.0+/-10.4 years; MACT: 35.1+/-7.7 years) and post-operative interval (MFX: 32.6+/-16.7 months; MACT: 31.7+/-18.3 months). After clinical evaluation using the Lysholm score, 3T-MRI was performed obtaining the MR observation of cartilage repair tissue (MOCART) score as well as T2-mapping and DWI for multi-parametric MRI. Quantitative T2-relaxation was achieved using a multi-echo spin-echo sequence; semi-quantitative diffusion-quotient (signal intensity without diffusion-weighting divided by signal intensity with diffusion weighting) was prepared by a partially balanced, steady-state gradient-echo pulse sequence. RESULTS: No differences in Lysholm (P=0.420) or MOCART (P=0.209) score were observed between MFX and MACT. T2-mapping showed lower T2 values after MFX compared to MACT (P=0.039). DWI distinguished between healthy cartilage and cartilage repair tissue in both procedures (MFX: P=0.001; MACT: P=0.007). Correlations were found between the Lysholm and the MOCART score (Pearson: 0.484; P=0.031), between the Lysholm score and DWI (Pearson:-0.557; P=0.011) and a trend between the Lysholm score and T2 (Person: 0.304; P=0.193). CONCLUSION: Using T2-mapping and DWI, additional information could be gained compared to clinical scoring or morphological MRI. In combination clinical, MR-morphological and MR-biochemical parameters can be seen as a promising multimodal tool in the follow-up of cartilage repair.