998 resultados para Diffusion Chambers, Culture
Resumo:
Local conditions in the past often limited opportunities for scholarly exchange. But now these limits are gone and the global workplace has replaced them. It is important to react to these changes. Every academic department must now adopt new methods and rethink processes. Another is the intense national and international debate about open access to scholarly knowledge. The Open Access Initiative shows that a change is taking place in the communication process. This change is also important for service departments within research institutions. Libraries, computer centers and related units have to ask themselves how to react appropriately to the new conditions. What services must be changed or redeveloped, and in what quality and quantity should they be offered? This article focuses on changes in the scholarly publication process. It describes both technological changes and the changes needed in people's attitudes.
Resumo:
Bardina and Jolis [Stochastic process. Appl. 69 (1997) 83-109] prove an extension of Ito's formula for F(Xt, t), where F(x, t) has a locally square-integrable derivative in x that satisfies a mild continuity condition in t and X is a one-dimensional diffusion process such that the law of Xt has a density satisfying certain properties. This formula was expressed using quadratic covariation. Following the ideas of Eisenbaum [Potential Anal. 13 (2000) 303-328] concerning Brownian motion, we show that one can re-express this formula using integration over space and time with respect to local times in place of quadratic covariation. We also show that when the function F has a locally integrable derivative in t, we can avoid the mild continuity condition in t for the derivative of F in x.
Resumo:
Although cross-sectional diffusion tensor imaging (DTI) studies revealed significant white matter changes in mild cognitive impairment (MCI), the utility of this technique in predicting further cognitive decline is debated. Thirty-five healthy controls (HC) and 67 MCI subjects with DTI baseline data were neuropsychologically assessed at one year. Among them, there were 40 stable (sMCI; 9 single domain amnestic, 7 single domain frontal, 24 multiple domain) and 27 were progressive (pMCI; 7 single domain amnestic, 4 single domain frontal, 16 multiple domain). Fractional anisotropy (FA) and longitudinal, radial, and mean diffusivity were measured using Tract-Based Spatial Statistics. Statistics included group comparisons and individual classification of MCI cases using support vector machines (SVM). FA was significantly higher in HC compared to MCI in a distributed network including the ventral part of the corpus callosum, right temporal and frontal pathways. There were no significant group-level differences between sMCI versus pMCI or between MCI subtypes after correction for multiple comparisons. However, SVM analysis allowed for an individual classification with accuracies up to 91.4% (HC versus MCI) and 98.4% (sMCI versus pMCI). When considering the MCI subgroups separately, the minimum SVM classification accuracy for stable versus progressive cognitive decline was 97.5% in the multiple domain MCI group. SVM analysis of DTI data provided highly accurate individual classification of stable versus progressive MCI regardless of MCI subtype, indicating that this method may become an easily applicable tool for early individual detection of MCI subjects evolving to dementia.
Resumo:
Aquaporin 9 facilitates the diffusion of water but also glycerol and monocarboxylates, known as brain energy substrates. AQP9 was recently observed in catecholaminergic neurons that are implicated in energy homeostasis and also possibly in neuroendocrine effects of diabetes. Recently it has been observed that the level of AQP9 expression in hepatocytes is sensitive to the blood concentration of insulin. Furthermore, insulin injection in the brain is known to be related to the energy homeostasis. Based on these observations, we investigated if the concentration of insulin affects the level of brain AQP9 expression and if so, in which cell types. This study has been carried out, in a model of the diabetic rat generated by streptozotocin injection and on brainstem slices. In diabetic rats showing a decrease in systemic insulin concentration, AQP9 is only increased in brain areas containing catecholaminergic neurons. In contrast, no significant change is detected in the cerebral cortex and the cerebellum. Using immunocytochemistry, we are able to show that the increase in AQP9 expression is specifically present in catecholaminergic neurons. In brainstem slice cultures, 2 microM insulin induces a significant decrease in AQP9 protein levels 6 h after application, suggesting that brain AQP9 is also regulated by the insulin. These results show that the level of expression of brain AQP9 is affected by variations of the concentration of insulin in a diabetic model and in vitro.
Resumo:
Background: b-value is the parameter characterizing the intensity of the diffusion weighting during image acquisition. Data acquisition is usually performed with low b value (b~1000 s/mm2). Evidence shows that high b-values (b>2000 s/mm2) are more sensitive to the slow diffusion compartment (SDC) and maybe more sensitive in detecting white matter (WM) anomalies in schizophrenia.Methods: 12 male patients with schizophrenia (mean age 35 +/-3 years) and 16 healthy male controls matched for age were scanned with a low b-value (1000 s/mm2) and a high b-value (4000 s/mm2) protocol. Apparent diffusion coefficient (ADC) is a measure of the average diffusion distance of water molecules per time unit (mm2/s). ADC maps were generated for all individuals. 8 region of interests (frontal and parietal region bilaterally, centrum semi-ovale bilaterally and anterior and posterior corpus callosum) were manually traced blind to diagnosis.Results: ADC measures acquired with high b-value imaging were more sensitive in detecting differences between schizophrenia patients and healthy controls than low b-value imaging with a gain in significance by a factor of 20- 100 times despite the lower image Signal-to-noise ratio (SNR). Increased ADC was identified in patient's WM (p=0.00015) with major contributions from left and right centrum semi-ovale and to a lesser extent right parietal region.Conclusions: Our results may be related to the sensitivity of high b-value imaging to the SDC believed to reflect mainly the intra-axonal and myelin bound water pool. High b-value imaging might be more sensitive and specific to WM anomalies in schizophrenia than low b-value imaging
Resumo:
The objective of this paper was to describe the radiation and energy balance, during the lettuce (Lactuca sativa, L. cv. Verônica) crop cycle inside a polyethylene greenhouse. The radiation and energy balance was made inside a tunnel greenhouse with polyethylene cover (100 mum) and in an external area, both areas with 35 m². Global, reflected and net radiation, soil heat flux and air temperature (dry and humid) were measured during the crop cycle. A Datalogger, which operated at 1 Hz frequency, storing 5 minutes averages was utilized. The global (K¯) and reflected (K) radiations showed that the average transmission of global radiation (K¯in / K¯ex) was almost constant, near to 79.59%, while the average ratio of reflected radiation (Kin / Kex) was 69.21% with 8.47% standard-deviation. The normalized curves of short-wave net radiation, in relation to the global radiation (K*/ K¯), found for both environments, were almost constant at the beginning of cycle; this relation decreased in the final stage of culture. The normalized relation (Rn/ K¯) was bigger in the external area, about 12%, when the green culture covered the soil surface. The long-wave radiation balance average (L*) was bigger outside, about 50%. The energy balance, estimated in terms of vertical fluxes, showed that, for the external area, in average, 83.07% of total net radiation was converted in latent heat evaporation (LE), and 18% in soil heat flux (G), and 9.96% in sensible heat (H), while inside of the greenhouse, 58.71% of total net radiation was converted in LE, 42.68% in H, and 28.79% in G.
Resumo:
Ce livre propose une perspective novatrice en psychologie qui intègre la culture à titre constitutif dans son approche du développement. Comment les productions humaines contribuent-elles au développement psychologique ? Au sens fort, comment produisent-elles le psychisme ? Et comment, en les étudiant, en saisir les développements originaux chez les sujets dans leurs contextes de production ? Les recherches présentées dans cet ouvrage portent ainsi sur les dimensions matérielles de la culture dans l'avènement et le fonctionnement du psychisme, en intégrant également le langage et d'autres dimensions idéelles de celle-ci. Les textes de cet ouvrage s'inscrivent dans un dialogue interdisciplinaire, replaçant la psychologie dans le cercle des sciences humaines et sociales, requestionnant de facto son épistémologie et ses méthodes.
Resumo:
Casparian strips are ring-like cell-wall modifications in the root endodermis of vascular plants. Their presence generates a paracellular barrier, analogous to animal tight junctions, that is thought to be crucial for selective nutrient uptake, exclusion of pathogens, and many other processes. Despite their importance, the chemical nature of Casparian strips has remained a matter of debate, confounding further molecular analysis. Suberin, lignin, lignin-like polymers, or both, have been claimed to make up Casparian strips. Here we show that, in Arabidopsis, suberin is produced much too late to take part in Casparian strip formation. In addition, we have generated plants devoid of any detectable suberin, which still establish functional Casparian strips. In contrast, manipulating lignin biosynthesis abrogates Casparian strip formation. Finally, monolignol feeding and lignin-specific chemical analysis indicates the presence of archetypal lignin in Casparian strips. Our findings establish the chemical nature of the primary root-diffusion barrier in Arabidopsis and enable a mechanistic dissection of the formation of Casparian strips, which are an independent way of generating tight junctions in eukaryotes.
Resumo:
The nose is the anatomical site usually recommended for methicillin-resistant Staphylococcus aureus (MRSA) screening. Other sites are also recommended, but are more controversial. We showed that the sensitivities of MRSA detection from nasal swabs alone were 48% and 62% by culture or by rapid PCR test, respectively. These percentages increased to 79% and 92% with the addition of groin swabs, and to 96% and 99% with the addition of groin and throat swabs. In conclusion, neither by culture nor by rapid PCR test is nose sampling alone sufficient for MRSA detection. Additional anatomical sites should include at least the groin and throat.
Resumo:
Diffusion-weighting in magnetic resonance imaging (MRI) increases the sensitivity to molecular Brownian motion, providing insight in the micro-environment of the underlying tissue types and structures. At the same time, the diffusion weighting renders the scans sensitive to other motion, including bulk patient motion. Typically, several image volumes are needed to extract diffusion information, inducing also inter-volume motion susceptibility. Bulk motion is more likely during long acquisitions, as they appear in diffusion tensor, diffusion spectrum and q-ball imaging. Image registration methods are successfully used to correct for bulk motion in other MRI time series, but their performance in diffusion-weighted MRI is limited since diffusion weighting introduces strong signal and contrast changes between serial image volumes. In this work, we combine the capability of free induction decay (FID) navigators, providing information on object motion, with image registration methodology to prospectively--or optionally retrospectively--correct for motion in diffusion imaging of the human brain. Eight healthy subjects were instructed to perform small-scale voluntary head motion during clinical diffusion tensor imaging acquisitions. The implemented motion detection based on FID navigator signals is processed in real-time and provided an excellent detection performance of voluntary motion patterns even at a sub-millimetre scale (sensitivity≥92%, specificity>98%). Motion detection triggered an additional image volume acquisition with b=0 s/mm2 which was subsequently co-registered to a reference volume. In the prospective correction scenario, the calculated motion-parameters were applied to perform a real-time update of the gradient coordinate system to correct for the head movement. Quantitative analysis revealed that the motion correction implementation is capable to correct head motion in diffusion-weighted MRI to a level comparable to scans without voluntary head motion. The results indicate the potential of this method to improve image quality in diffusion-weighted MRI, a concept that can also be applied when highest diffusion weightings are performed.
Resumo:
The fate of European arctic-alpine species during Pleistocene climatic oscillations still remains debated. Did these cold-adapted species invade much of the continental steppe or did they remain restricted to warmer slopes of inner mountain massifs? To examine this question, we investigated the phylogeography of Gentiana nivalis, a typical European arctic-alpine plant species. Genome fingerprinting analyses revealed that four genetic pools are actually unevenly distributed across the continent. One cluster covers almost all mountain massifs as well as northern areas, and thus coincides with a scenario of past distribution covering a large part of the European glacial steppe. In contrast, the three other lineages are strongly restricted spatially to western, central, and eastern Alps, respectively, thus arguing towards a scenario of in situ glacial survival. The coexistence of lineages with such contrasting demographic histories in Europe challenges our classical view of refugia and corroborates several hypotheses of biogeographers from the twentieth century.
Resumo:
Primary sensory neurons were grown under four conditions of culture. The influence of nonneuronal cells, horse serum or both was studied on the phenotypic expression of certain neuronal subpopulations. The number of neurons expressing acetylcholinesterase, alpha-bungarotoxin-binding sites or a high uptake capacity for glutamine was enhanced by nonneuronal cells. The horse serum increases the neuronal subpopulation exhibiting a carbonic anhydrase activity. Certain phenotypic changes fit conditions consistent with an epigenetic induction rather than a cell selection.