980 resultados para Difference equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a growth analysis model that combines large amounts of environmental data with limited amounts of biological data and apply it to Corbicula japonica. The model uses the maximum-likelihood method with the Akaike information criterion, which provides an objective criterion for model selection. An adequate distribution for describing a single cohort is selected from available probability density functions, which are expressed by location and scale parameters. Daily relative increase rates of the location parameter are expressed by a multivariate logistic function with environmental factors for each day and categorical variables indicating animal ages as independent variables. Daily relative increase rates of the scale parameter are expressed by an equation describing the relationship with the daily relative increase rate of the location parameter. Corbicula japonica grows to a modal shell length of 0.7 mm during the first year in Lake Abashiri. Compared with the attain-able maximum size of about 30 mm, the growth of juveniles is extremely slow because their growth is less susceptible to environmental factors until the second winter. The extremely slow growth in Lake Abashiri could be a geographical genetic variation within C. japonica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teeth of 71 estuarine dolphins (Sotalia guianensis) incidentally caught on the coast of Paraná State, southern Brazil, were used to estimate age. The oldest male and female dolphins were 29 and 30 years, respectively. The mean distance from the neonatal line to the end of the first growth layer group (GLG) was 622.4 ±19.1 μm (n=48). One or two accessory layers were observed between the neonatal line and the end of the first GLG. One of the accessory layers, which was not always present, was located at a mean of 248.9 ±32.6 μm (n=25) from the neonatal line, and its interpretation remains uncertain.The other layer, located at a mean of 419.6 ±44.6 μm (n=54) from the neonatal line, was always present and was first observed between 6.7 and 10.3 months of age. This accessory layer could be a record of weaning in this dolphin. Although no differences in age estimates were observed between teeth sectioned in the anterior-posterior and buccal-lingual planes, we recommend sectioning the teeth in the buccal-lingual plane in order to obtain on-center sections more easily. We also recommend not using teeth from the most anterior part of the mandibles for age estimation. The number of GLGs counted in those teeth was 50% less than the number of GLGs counted in the teeth from the median part of the mandible of the same animal. Although no significant difference (P>0.05) was found between the total lengths of adult male and female estuarine dolphins, we observed that males exhibited a second growth spurt around five years of age. This growth spurt would require that separate growth curves be calculated for the sexes. The asymptotic length (TL∞), k, and t0 obtained by the von Bertalanffy growth model were 177.3 cm, 0.66, and –1.23, respectively, for females and 159.6 cm, 2.02, and –0.38, respectively, for males up to five years, and 186.4 cm, 0.53 and –1.40, respectively, for males older than five years. The total weight (TW)/total length (TL) equations obtained for male and female estuarine dolphins were TW = 3.156 × 10−6 × TL 3.2836 (r=0.96), and TW = 8.974 × 10−5 × TL 2.6182 (r=0.95), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is given for solving an optimal H2 approximation problem for SISO linear time-invariant stable systems. The method, based on constructive algebra, guarantees that the global optimum is found; it does not involve any gradient-based search, and hence avoids the usual problems of local minima. We examine mostly the case when the model order is reduced by one, and when the original system has distinct poles. This case exhibits special structure which allows us to provide a complete solution. The problem is converted into linear algebra by exhibiting a finite-dimensional basis for a certain space, and can then be solved by eigenvalue calculations, following the methods developed by Stetter and Moeller. The use of Buchberger's algorithm is avoided by writing the first-order optimality conditions in a special form, from which a Groebner basis is immediately available. Compared with our previous work the method presented here has much smaller time and memory requirements, and can therefore be applied to systems of significantly higher McMillan degree. In addition, some hypotheses which were required in the previous work have been removed. Some examples are included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we explore the possibility of using the equations of a well known compact model for CMOS transistors as a parameterized compact model for a variety of FET based nano-technology devices. This can turn out to be a practical preliminary solution for system level architectural researchers, who could simulate behaviourally large scale systems, while more physically based models become available for each new device. We have used a four parameter version of the EKV model equations and verified that fitting errors are similar to those when using them for standard CMOS FET transistors. The model has been used for fitting measured data from three types of FET nano-technology devices obeying different physics, for different fabrication steps, and under different programming conditions. © 2009 IEEE NANO Organizers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to separate acoustically radiating and non-radiating components in fluid flow is desirable to identify the true sources of aerodynamic sound, which can be expressed in terms of the non-radiating flow dynamics. These non-radiating components are obtained by filtering the flow field. Two linear filtering strategies are investigated: one is based on a differential operator, the other employs convolution operations. Convolution filters are found to be superior at separating radiating and non-radiating components. Their ability to decompose the flow into non-radiating and radiating components is demonstrated on two different flows: one satisfying the linearized Euler and the other the Navier-Stokes equations. In the latter case, the corresponding sound sources are computed. These sources provide good insight into the sound generation process. For source localization, they are found to be superior to the commonly used sound sources computed using the steady part of the flow. Copyright © 2009 by S. Sinayoko, A. Agarwal, Z. Hu.