846 resultados para Design environment
Resumo:
Culverts are among the most common hydraulic structures. Modern designs do not differ from ancient structures and are often characterised by significant afflux at design flows. A significant advance was the development of the Minimum Energy Loss (MEL) culverts in the late 1950s. The design technique allows a drastic reduction in upstream flooding associated with lower costs. The development and operational performances of this type of structure is presented. The successful operation of MEL culverts for more than 40 years is documented with first-hand records during and after floods. The experiences demonstrate the design soundness while highlighting the importance of the hydraulic expertise of the design engineers.
Resumo:
This study investigates the hierarchy of cytotoxic T cell (CTL) responses to twelve HLA A2-restricted epitopes from the latent, lytic and structural proteins of Epstein–Barr virus (EBV) in acute infectious mononucleosis and in healthy seropositive donors and the relative immunogenecity of these epitopes in transgenic mice. Responses to the lytic epitope were uniformly strong in all healthy seropositive individuals and acute infectious mononucleosis donors while moderate or low responses were observed to the latent and structural epitopes, respectively in both groups studied. In contrast, when HLA A2/Kb transgenic mice were immunised with these peptide epitopes, CTL responses were observed to all epitopes with a maximal response to the epitopes within the structural proteins and low to moderate responses to the latent epitopes. This hierarchy of CTL responses in mice was also reflected in an MHC stabilisation analysis. These contrasting CTL responses in humans following natural infection compared to the immunogenicity of these epitopes and their ability to stabilise MHC may need to be considered when designing an EBV vaccine.
Resumo:
The cystine knot structural motif is present in peptides and proteins from a variety of species, including fungi, plants, marine molluscs. insects and spiders. It comprises an embedded ring formed by two disulfide bonds and their connecting backbone segments which is threaded by a third disulfide bond. It is invariably associated with nearby beta-sheet structure and appears to be a highly efficient motif for structure stabilization. Because of this stability it makes an ideal framework for molecular engineering applications. In this review we summarize the main structural features of the cystine knot motif, focussing on toxin molecules containing either the inhibitor cystine knot or the cyclic cystine knot. Peptides containing these motifs are 26-48 residues long and include ion channel blockers, haemolytic agents, as well as molecules having antiviral and antibacterial activities. The stability of peptide toxins containing the cystine knot motif, their range of bioactivities and their unique structural scaffold can be harnessed for molecular engineering applications and in drug design. Applications of cystine knot molecules for the treatment of pain. and their potential use in antiviral and antibacterial applications are described. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Numerous everyday tasks require the nervous system to program a prehensile movement towards a target object positioned in a cluttered environment. Adult humans are extremely proficient in avoiding contact with any non-target objects (obstacles) whilst carrying out such movements. A number of recent studies have highlighted the importance of considering the control of reach-to-grasp (prehension) movements in the presence of such obstacles. The current study was constructed with the aim of beginning the task of studying the relative impact on prehension as the position of obstacles is varied within the workspace. The experimental design ensured that the obstacles were positioned within the workspace in locations where they did not interfere physically with the path taken by the hand when no obstacle was present. In all positions, the presence of an obstacle caused the hand to slow down and the maximum grip aperture to decrease. Nonetheless, the effect of the obstacle varied according to its position within the workspace. In the situation where an obstacle was located a small distance to the right of a target object, the obstacle showed a large effect on maximum grip aperture but a relatively small effect on movement time. In contrast, an object positioned in front and to the right of a target object had a large effect on movement speed but a relatively small effect on maximum grip aperture. It was found that the presence of two obstacles caused the system to decrease further the movement speed and maximum grip aperture. The position of the two obstacles dictated the extent to which their presence affected the movement parameters. These results show that the antic ipated likelihood of a collision with potential obstacles affects the planning of movement duration and maximum grip aperture in prehension.