952 resultados para Dem gross error detection
Resumo:
This thesis studies empirically whether measurement errors in aggregate production statistics affect sentiment and future output. Initial announcements of aggregate production are subject to measurement error, because many of the data required to compile the statistics are produced with a lag. This measurement error can be gauged as the difference between the latest revised statistic and its initial announcement. Assuming aggregate production statistics help forecast future aggregate production, these measurement errors are expected to affect macroeconomic forecasts. Assuming agents’ macroeconomic forecasts affect their production choices, these measurement errors should affect future output through sentiment. This thesis is primarily empirical, so the theoretical basis, strategic complementarity, is discussed quite briefly. However, it is a model in which higher aggregate production increases each agent’s incentive to produce. In this circumstance a statistical announcement which suggests aggregate production is high would increase each agent’s incentive to produce, thus resulting in higher aggregate production. In this way the existence of strategic complementarity provides the theoretical basis for output fluctuations caused by measurement mistakes in aggregate production statistics. Previous empirical studies suggest that measurement errors in gross national product affect future aggregate production in the United States. Additionally it has been demonstrated that measurement errors in the Index of Leading Indicators affect forecasts by professional economists as well as future industrial production in the United States. This thesis aims to verify the applicability of these findings to other countries, as well as study the link between measurement errors in gross domestic product and sentiment. This thesis explores the relationship between measurement errors in gross domestic production and sentiment and future output. Professional forecasts and consumer sentiment in the United States and Finland, as well as producer sentiment in Finland, are used as the measures of sentiment. Using statistical techniques it is found that measurement errors in gross domestic product affect forecasts and producer sentiment. The effect on consumer sentiment is ambiguous. The relationship between measurement errors and future output is explored using data from Finland, United States, United Kingdom, New Zealand and Sweden. It is found that measurement errors have affected aggregate production or investment in Finland, United States, United Kingdom and Sweden. Specifically, it was found that overly optimistic statistics announcements are associated with higher output and vice versa.
Resumo:
Rhizoctonia spp. are ubiquitous soil inhabiting fungi that enter into pathogenic or symbiotic associations with plants. In general Rhizoctonia spp. are regarded as plant pathogenic fungi and many cause root rot and other plant diseases which results in considerable economic losses both in agriculture and forestry. Many Rhizoctonia strains enter into symbiotic mycorrhizal associations with orchids and some hypovirulent strains are promising biocontrol candidates in preventing host plant infection by pathogenic Rhizoctonia strains. This work focuses on uni- and binucleate Rhizoctonia (respectively UNR and BNR) strains belonging to the teleomorphic genus Ceratobasidium, but multinucleate Rhizoctonia (MNR) belonging to teleomorphic genus Thanatephorus and ectomycorrhizal fungal species, such as Suillus bovinus, were also included in DNA probe development work. Strain specific probes were developed to target rDNA ITS (internal transcribed spacer) sequences (ITS1, 5.8S and ITS2) and applied in Southern dot blot and liquid hybridization assays. Liquid hybridization was more sensitive and the size of the hybridized PCR products could be detected simultaneously, but the advantage in Southern hybridization was that sample DNA could be used without additional PCR amplification. The impacts of four Finnish BNR Ceratorhiza sp. strains 251, 266, 268 and 269 were investigated on Scot pine (Pinus sylvestris) seedling growth, and the infection biology and infection levels were microscopically examined following tryphan blue staining of infected roots. All BNR strains enhanced early seedling growth and affected the root architecture, while the infection levels remained low. The fungal infection was restricted to the outer cortical regions of long roots and typical monilioid cells detected with strain 268. The interactions of pathogenic UNR Ceratobasidium bicorne strain 1983-111/1N, and endophytic BNR Ceratorhiza sp. strain 268 were studied in single or dual inoculated Scots pine roots. The fungal infection levels and host defence-gene activity of nine transcripts [phenylalanine ammonia lyase (pal1), silbene synthase (STS), chalcone synthase (CHS), short-root specific peroxidase (Psyp1), antimicrobial peptide gene (Sp-AMP), rapidly elicited defence-related gene (PsACRE), germin-like protein (PsGER1), CuZn- superoxide dismutase (SOD), and dehydrin-like protein (dhy-like)] were measured from differentially treated and un-treated control roots by quantitative real time PCR (qRT-PCR). The infection level of pathogenic UNR was restricted in BNR- pre-inoculated Scots pine roots, while UNR was more competitive in simultaneous dual infection. The STS transcript was highly up-regulated in all treated roots, while CHS, pal1, and Psyp1 transcripts were more moderately activated. No significant activity of Sp-AMP, PsACRE, PsGER1, SOD, or dhy-like transcripts were detected compared to control roots. The integrated experiments presented, provide tools to assist in the future detection of these fungi in the environment and to understand the host infection biology and defence, and relationships between these interacting fungi in roots and soils. This study further confirms the complexity of the Rhizoctonia group both phylogenetically and in their infection biology and plant host specificity. The knowledge obtained could be applied in integrated forestry nursery management programmes.
Resumo:
Staphylococcus aureus is one of the most important bacteria that cause disease in humans, and methicillin-resistant S. aureus (MRSA) has become the most commonly identified antibiotic-resistant pathogen in many parts of the world. MRSA rates have been stable for many years in the Nordic countries and the Netherlands with a low MRSA prevalence in Europe, but in the recent decades, MRSA rates have increased in those low-prevalence countries as well. MRSA has been established as a major hospital pathogen, but has also been found increasingly in long-term facilities (LTF) and in communities of persons with no connections to the health-care setting. In Finland, the annual number of MRSA isolates reported to the National Infectious Disease Register (NIDR) has constantly increased, especially outside the Helsinki metropolitan area. Molecular typing has revealed numerous outbreak strains of MRSA, some of which have previously been associated with community acquisition. In this work, data on MRSA cases notified to the NIDR and on MRSA strain types identified with pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and staphylococcal cassette chromosome mec (SCCmec) typing at the National Reference Laboratory (NRL) in Finland from 1997 to 2004 were analyzed. An increasing trend in MRSA incidence in Finland from 1997 to 2004 was shown. In addition, non-multi-drug resistant (NMDR) MRSA isolates, especially those resistant only to methicillin/oxacillin, showed an emerging trend. The predominant MRSA strains changed over time and place, but two internationally spread epidemic strains of MRSA, FIN-16 and FIN-21, were related to the increase detected most recently. Those strains were also one cause of the strikingly increasing invasive MRSA findings. The rise of MRSA strains with SCCmec types IV or V, possible community-acquired MRSA was also detected. With questionnaires, the diagnostic methods used for MRSA identification in Finnish microbiology laboratories and the number of MRSA screening specimens studied were reviewed. Surveys, which focused on the MRSA situation in long-term facilities in 2001 and on the background information of MRSA-positive persons in 2001-2003, were also carried out. The rates of MRSA and screening practices varied widely across geographic regions. Part of the NMDR MRSA strains could remain undetected in some laboratories because of insufficient diagnostic techniques used. The increasing proportion of elderly population carrying MRSA suggests that MRSA is an emerging problem in Finnish long-term facilities. Among the patients, 50% of the specimens were taken on a clinical basis, 43% on a screening basis after exposure to MRSA, 3% on a screening basis because of hospital contact abroad, and 4% for other reasons. In response to an outbreak of MRSA possessing a new genotype that occurred in a health care ward and in an associated nursing home of a small municipality in Northern Finland in autumn 2003, a point-prevalence survey was performed six months later. In the same study, the molecular epidemiology of MRSA and methicillin-sensitive S. aureus (MSSA) strains were also assessed, the results to the national strain collection compared, and the difficulties of MRSA screening with low-level oxacillin-resistant isolates encountered. The original MRSA outbreak in LTF, which consisted of isolates possessing a nationally new PFGE profile (FIN-22) and internationally rare MLST type (ST-27), was confined. Another previously unrecognized MRSA strain was found with additional screening, possibly indicating that current routine MRSA screening methods may be insufficiently sensitive for strains possessing low-level oxacillin resistance. Most of the MSSA strains found were genotypically related to the epidemic MRSA strains, but only a few of them had received the SCCmec element, and all those strains possessed the new SCCmec type V. In the second largest nursing home in Finland, the colonization of S. aureus and MRSA, and the role of screening sites along with broth enrichment culture on the sensitivity to detect S. aureus were studied. Combining the use of enrichment broth and perineal swabbing, in addition to nostrils and skin lesions swabbing, may be an alternative for throat swabs in the nursing home setting, especially when residents are uncooperative. Finally, in order to evaluate adequate phenotypic and genotypic methods needed for reliable laboratory diagnostics of MRSA, oxacillin disk diffusion and MIC tests to the cefoxitin disk diffusion method at both +35°C and +30°C, both with or without an addition of sodium chloride (NaCl) to the Müller Hinton test medium, and in-house PCR to two commercial molecular methods (the GenoType® MRSA test and the EVIGENETM MRSA Detection test) with different bacterial species in addition to S. aureus were compared. The cefoxitin disk diffusion method was superior to that of oxacillin disk diffusion and to the MIC tests in predicting mecA-mediated resistance in S. aureus when incubating at +35°C with or without the addition of NaCl to the test medium. Both the Geno Type® MRSA and EVIGENETM MRSA Detection tests are usable, accurate, cost-effective, and sufficiently fast methods for rapid MRSA confirmation from a pure culture.
Resumo:
Incursions of plant pests and diseases pose serious threats to food security, agricultural productivity and the natural environment. One of the challenges in confidently delimiting and eradicating incursions is how to choose from an arsenal of surveillance and quarantine approaches in order to best control multiple dispersal pathways. Anthropogenic spread (propagules carried on humans or transported on produce or equipment) can be controlled with quarantine measures, which in turn can vary in intensity. In contrast, environmental spread processes are more difficult to control, but often have a temporal signal (e.g. seasonality) which can introduce both challenges and opportunities for surveillance and control. This leads to complex decisions regarding when, where and how to search. Recent modelling investigations of surveillance performance have optimised the output of simulation models, and found that a risk-weighted randomised search can perform close to optimally. However, exactly how quarantine and surveillance strategies should change to reflect different dispersal modes remains largely unaddressed. Here we develop a spatial simulation model of a plant fungal-pathogen incursion into an agricultural region, and its subsequent surveillance and control. We include structural differences in dispersal via the interplay of biological, environmental and anthropogenic connectivity between host sites (farms). Our objective was to gain broad insights into the relative roles played by different spread modes in propagating an invasion, and how incorporating knowledge of these spread risks may improve approaches to quarantine restrictions and surveillance. We find that broad heuristic rules for quarantine restrictions fail to contain the pathogen due to residual connectivity between sites, but surveillance measures enable early detection and successfully lead to suppression of the pathogen in all farms. Alternative surveillance strategies attain similar levels of performance by incorporating environmental or anthropogenic dispersal risk in the prioritisation of sites. Our model provides the basis to develop essential insights into the effectiveness of different surveillance and quarantine decisions for fungal pathogen control. Parameterised for authentic settings it will aid our understanding of how the extent and resolution of interventions should suitably reflect the spatial structure of dispersal processes.
Resumo:
The paper presents an innovative approach to modelling the causal relationships of human errors in rail crack incidents (RCI) from a managerial perspective. A Bayesian belief network is developed to model RCI by considering the human errors of designers, manufactures, operators and maintainers (DMOM) and the causal relationships involved. A set of dependent variables whose combinations express the relevant functions performed by each DMOM participant is used to model the causal relationships. A total of 14 RCI on Hong Kong’s mass transit railway (MTR) from 2008 to 2011 are used to illustrate the application of the model. Bayesian inference is used to conduct an importance analysis to assess the impact of the participants’ errors. Sensitivity analysis is then employed to gauge the effect the increased probability of occurrence of human errors on RCI. Finally, strategies for human error identification and mitigation of RCI are proposed. The identification of ability of maintainer in the case study as the most important factor influencing the probability of RCI implies the priority need to strengthen the maintenance management of the MTR system and that improving the inspection ability of the maintainer is likely to be an effective strategy for RCI risk mitigation.
Resumo:
Archaea were long thought to be a group of ancient bacteria, which mainly lived in extreme environments. Due to the development of DNA sequencing methods and molecular phylogenetic analyses, it was shown that the living organisms are in fact divided into three domains; the Archaea, Bacteria and the Eucarya. Since the beginning of the previous decade, it was shown that archaea generally inhabit moderate environments and that these non-extremophilic archaea are more ubiquitous than the extremophiles. Group 1 of non-extreme archaea affiliate with the phylum Crenarchaeota. The most commonly found soil archaea belong to the subgroup 1.1b. However, the Crenarchaeota found in the Fennoscandian boreal forest soil belong to the subgroup 1.1c. The organic top layer of the boreal forest soil, the humus, is dominated by ectomycorrhizal fungal hyphae. These colonise virtually all tree fine root tips in the humus layer and have been shown to harbour distinct bacterial populations different from those in the humus. The archaea have also been shown to colonise both boreal forest humus and the rhizospheres of plants. In this work, studies on the archaeal communities in the ectomycorrhizospheres of boreal forest trees were conducted in microcosms. Archaea belonging to the group 1.1c Crenarchaeota and Euryarchaeota of the genera Halobacterium and Methanolobus were detected. The archaea generally colonised fungal habitats, such as ectomycorrhizas and external mycelia, rather than the non-mycorrhizal fine roots of trees. The species of ectomycorrhizal fungus had a great impact on the archaeal community composition. A stable euryarchaeotal community was detected especially in the mycorrhizas, of most of the tested Scots pine colonising ectomycorrhizal fungi. The Crenarchaeota appeared more sporadically in these habitats, but had a greater diversity than the Euryarchaeota. P. involutus mycorrhizas had a higher diversity of 1.1c Crenarchaeota than the other ectomycorrhizal fungi. The detection level of archaea in the roots of boreal trees was generally low although archaea have been shown to associate with roots of different plants. However, alder showed a high diversity of 1.1c Crenarchaeota, exceeding that of any of the tested mycorrhizas. The archaeal 16S rRNA genes detected from the non-mycorrhizal roots were different from those of the P. involutus mycorrhizas. In the phylogenetic analyses, the archaeal 16S rRNA gene sequences obtained from non-mycorrhizal fine roots fell in a separate cluster within the group 1.1c Crenarchaeota than those from the mycorrhizas. When the roots of the differrent tree species were colonised by P. involutus, the diversity and frequency of the archaeal populations of the different tree species were more similar to each other. Both Cren- and Euryarchaeota were enriched in cultures to which C-1 substrates were added. The 1.1c Crenarchaeota grew anaerobically in mineral medium with CH4 and CO2 as the only available C sources, and in yeast extract media with CO2 and CH4 or H2. The crenarchaeotal diversity was higher in aerobic cultures on mineral medium with CH4 or CH3OH than in the anaerobic cultures. Ecological functions of the mycorrhizal 1.1c Crenarchaeota in both anaerobic and aerobic cycling of C-1 compounds were indicated. The phylogenetic analyses did not divide the detected Crenarchaeota into anaerobic and aerobic groups. This may suggest that the mycorrhizospheric crenarchaeotal communities consist of closely related groups of anaerobic and aerobic 1.1c Crenarchaeota, or the 1.1c Crenarchaeota may be facultatively anaerobic. Halobacteria were enriched in non-saline anaerobic yeast extract medium cultures in which CH4 was either added or produced, but were not detected in the aerobic cultures. They may potentially be involved in anaerobic CH4 cycling in ectomycorrhizas. The CH4 production of the mycorrhizal samples was over 10 times higher than for humus devoid of mycorrhizal hyphae, indicating a high CH4 production potential of the mycorrhizal metanogenic community. Autofluorescent methanogenic archaea were detected by microscopy and 16S rRNA gene sequences of the genus Methanolobus were obtained. The archaeal community depended on both tree species and the type of ectomycorrhizal fungus colonising the roots and the Cren- and Euryarchaeota may have different ecological functions in the different parts of the boreal forest tree rhizosphere and mycorrhizosphere. By employing the results of this study, it may be possible to isolate both 1.1c Crenarchaeota as well as non-halophilic halobacteria and aerotolerant methanogens from mycorrhizospheres. These archaea may be used as indicators for change in the boreal forest soil ecosystem due to different factors, such as exploitations of forests and the rise in global temperature. More information about the microbial populations with apparently low cell numbers but significant ecological impacts, such as the boreal forest soil methanogens, may be of crucial importance to counteract human impacts on such globally important ecosystems as the boreal forests.
Resumo:
This paper presents 'vSpeak', the first initiative taken in Pakistan for ICT enabled conversion of dynamic Sign Urdu gestures into natural language sentences. To realize this, vSpeak has adopted a novel approach for feature extraction using edge detection and image compression which gives input to the Artificial Neural Network that recognizes the gesture. This technique caters for the blurred images as well. The training and testing is currently being performed on a dataset of 200 patterns of 20 words from Sign Urdu with target accuracy of 90% and above.
Resumo:
A geodesic-based approach using Lamb waves is proposed to locate the acoustic emission (AE) source and damage in an isotropic metallic structure. In the case of the AE (passive) technique, the elastic waves take the shortest path from the source to the sensor array distributed in the structure. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. The same approach is extended for detection of damage in a structure. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrix is compared and their difference gives the information about the reflection of waves from the damage. These waves are backpropagated from the sensors and the above method is used to locate the damage by finding the point where intersection of geodesics occurs. In this work, the geodesic approach is shown to be suitable to obtain a practicable source location solution in a more general set-up on any arbitrary surface containing finite discontinuities. Experiments were conducted on aluminum specimens of simple and complex geometry to validate this new method.
Resumo:
In [8], we recently presented two computationally efficient algorithms named B-RED and P-RED for random early detection. In this letter, we present the mathematical proof of convergence of these algorithms under general conditions to local minima.
Resumo:
Composting refers to aerobic degradation of organic material and is one of the main waste treatment methods used in Finland for treating separated organic waste. The composting process allows converting organic waste to a humus-like end product which can be used to increase the organic matter in agricultural soils, in gardening, or in landscaping. Microbes play a key role as degraders during the composting-process, and the microbiology of composting has been studied for decades, but there are still open questions regarding the microbiota in industrial composting processes. It is known that with the traditional, culturing-based methods only a small fraction, below 1%, of the species in a sample is normally detected. In recent years an immense diversity of bacteria, fungi and archaea has been found to occupy many different environments. Therefore the methods of characterising microbes constantly need to be developed further. In this thesis the presence of fungi and bacteria in full-scale and pilot-scale composting processes was characterised with cloning and sequencing. Several clone libraries were constructed and altogether nearly 6000 clones were sequenced. The microbial communities detected in this study were found to differ from the compost microbes observed in previous research with cultivation based methods or with molecular methods from processes of smaller scale, although there were similarities as well. The bacterial diversity was high. Based on the non-parametric coverage estimations, the number of bacterial operational taxonomic units (OTU) in certain stages of composting was over 500. Sequences similar to Lactobacillus and Acetobacteria were frequently detected in the early stages of drum composting. In tunnel stages of composting the bacterial community comprised of Bacillus, Thermoactinomyces, Actinobacteria and Lactobacillus. The fungal diversity was found to be high and phylotypes similar to yeasts were abundantly found in the full-scale drum and tunnel processes. In addition to phylotypes similar to Candida, Pichia and Geotrichum moulds from genus Thermomyces and Penicillium were observed in tunnel stages of composting. Zygomycetes were detected in the pilot-scale composting processes and in the compost piles. In some of the samples there were a few abundant phylotypes present in the clone libraries that masked the rare ones. The rare phylotypes were of interest and a method for collecting them from clone libraries for sequencing was developed. With negative selection of the abundant phylotyps the rare ones were picked from the clone libraries. Thus 41% of the clones in the studied clone libraries were sequenced. Since microbes play a central role in composting and in many other biotechnological processes, rapid methods for characterization of microbial diversity would be of value, both scientifically and commercially. Current methods, however, lack sensitivity and specificity and are therefore under development. Microarrays have been used in microbial ecology for a decade to study the presence or absence of certain microbes of interest in a multiplex manner. The sequence database collected in this thesis was used as basis for probe design and microarray development. The enzyme assisted detection method, ligation-detection-reaction (LDR) based microarray, was adapted for species-level detection of microbes characteristic of each stage of the composting process. With the use of a specially designed control probe it was established that a species specific probe can detect target DNA representing as little as 0.04% of total DNA in a sample. The developed microarray can be used to monitor composting processes or the hygienisation of the compost end product. A large compost microbe sequence dataset was collected and analysed in this thesis. The results provide valuable information on microbial community composition during industrial scale composting processes. The microarray method was developed based on the sequence database collected in this study. The method can be utilised in following the fate of interesting microbes during composting process in an extremely sensitive and specific manner. The platform for the microarray is universal and the method can easily be adapted for studying microbes from environments other than compost.
Resumo:
The problem of unsupervised anomaly detection arises in a wide variety of practical applications. While one-class support vector machines have demonstrated their effectiveness as an anomaly detection technique, their ability to model large datasets is limited due to their memory and time complexity for training. To address this issue for supervised learning of kernel machines, there has been growing interest in random projection methods as an alternative to the computationally expensive problems of kernel matrix construction and sup-port vector optimisation. In this paper we leverage the theory of nonlinear random projections and propose the Randomised One-class SVM (R1SVM), which is an efficient and scalable anomaly detection technique that can be trained on large-scale datasets. Our empirical analysis on several real-life and synthetic datasets shows that our randomised 1SVM algorithm achieves comparable or better accuracy to deep auto encoder and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.
Resumo:
This paper presents a novel crop detection system applied to the challenging task of field sweet pepper (capsicum) detection. The field-grown sweet pepper crop presents several challenges for robotic systems such as the high degree of occlusion and the fact that the crop can have a similar colour to the background (green on green). To overcome these issues, we propose a two-stage system that performs per-pixel segmentation followed by region detection. The output of the segmentation is used to search for highly probable regions and declares these to be sweet pepper. We propose the novel use of the local binary pattern (LBP) to perform crop segmentation. This feature improves the accuracy of crop segmentation from an AUC of 0.10, for previously proposed features, to 0.56. Using the LBP feature as the basis for our two-stage algorithm, we are able to detect 69.2% of field grown sweet peppers in three sites. This is an impressive result given that the average detection accuracy of people viewing the same colour imagery is 66.8%.
Resumo:
Generating discriminative input features is a key requirement for achieving highly accurate classifiers. The process of generating features from raw data is known as feature engineering and it can take significant manual effort. In this paper we propose automated feature engineering to derive a suite of additional features from a given set of basic features with the aim of both improving classifier accuracy through discriminative features, and to assist data scientists through automation. Our implementation is specific to HTTP computer network traffic. To measure the effectiveness of our proposal, we compare the performance of a supervised machine learning classifier built with automated feature engineering versus one using human-guided features. The classifier addresses a problem in computer network security, namely the detection of HTTP tunnels. We use Bro to process network traffic into base features and then apply automated feature engineering to calculate a larger set of derived features. The derived features are calculated without favour to any base feature and include entropy, length and N-grams for all string features, and counts and averages over time for all numeric features. Feature selection is then used to find the most relevant subset of these features. Testing showed that both classifiers achieved a detection rate above 99.93% at a false positive rate below 0.01%. For our datasets, we conclude that automated feature engineering can provide the advantages of increasing classifier development speed and reducing development technical difficulties through the removal of manual feature engineering. These are achieved while also maintaining classification accuracy.
Resumo:
This paper presents the results of a series of servo-controlled cyclic triaxial tests and numerical simulations using the three- dimensional discrete element method (DEM) on post-liquefaction undrained monotonic strength of granular materials. In a first test series,undrained monotonic tests were carried out after dissipating the excess pore water pressure developed during liquefaction. The influence of different parameters such as amplitude of axial strain,relative density and confining pressure prior to liquefaction on the post-liquefaction undrained response have been investigated.The results obtained highlight an insignificant influence of amplitude of axial strain, confining pressure and a significant influence of relative density on the post-liquefaction undrained monotonic stress-strain response.In the second series, undrained monotonic tests were carried out on similar triaxial samples without dissipating the excess pore water pressure developed during liquefaction. The results highlight that the amplitude of axial strain prior to liquefaction has a significant influence on the post-liquefaction undrained monotonic response.In addition,DEM simulations have been carried out on an assembly of spheres to simulate post-liquefaction behaviour.The simulations were very similar to the experiments with an objective to understand the behaviour of monotonic strength of liquefied samples from the grain scale. The numerical simulations using DEM have captured qualitatively all the features of the post-liquefaction undrained monotonic response in a manner similar to that of the experiments.In addition,a detailed study on the evolution of micromechanical parameters such as the average coordination number and induced anisotropic coefficients has been reported during the post-liquefaction undrained monotonic loading.
Resumo:
In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material. This image recognition algorithm is designed to cope with environmental occlusions such as shadows, smoke and obstructions. Once the fire is identified and classified, it is used to initialize a spatial/temporal fire simulation. This simulation is based on occupancy maps whose fidelity can be varied to include stochastic elements, various types of vegetation, weather conditions, and unique terrain. The simulations can be used to predict the effects of optimized firefighting methods to prevent the future propagation of the fires and greatly reduce time to detection of wildfires, thereby greatly minimizing the ensuing damage. This paper also documents experimental flight tests using a SenseFly Swinglet UAS conducted in Brisbane, Australia as well as modifications for custom UAS.