936 resultados para Deformable templates


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromatin remodeling complexes such as the SWI/SNF complex make DNA accessible to transcription factors by disrupting nucleosomes. However, it is not known how such complexes are targeted to the promoter. For example, a SWI/SNF1-like chromatin remodeling complex erythroid Krüppel-like factor (EKLF) coactivator-remodeling complex 1 (E-RC1) disrupts the nucleosomes over the human β-globin promoter in an EKLF-dependent manner. However, it is not known whether E-RC1 is targeted specifically to the β-globin promoter or whether E-RC1 is randomly targeted, but its activity is evident only at the β-globin promoter. Because E-RC1 cannot remodel chromatin over the β-globin promoter without EKLF in vitro, it has been proposed that SWI/SNF1-like complexes such as E-RC1 are targeted specifically to the promoter by selectively interacting with promoter-associated transcription factors such as EKLF. In this report, we test this hypothesis in the cellular context by using the ProteIN POsition Identification with Nuclease Tail (PIN*POINT) assay. We find that the Brahma-related gene (BRG) 1 and BRG1-associated factor (BAF) 170 subunits of E-RC1 are both recruited near the transcription initiation site of the β-globin promoter. On transiently transfected templates, both the locus control region and the EKLF-binding site are important for their recruitment to the β-globin promoter in mouse erythroleukemia cells. When the β-globin promoter was linked to the cytomegalovirus enhancer, the E-RC1 complex was not recruited, suggesting that recruitment of the E-RC1 complex is not a general property of enhancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

KIF (kinesin superfamily) proteins are microtubule-dependent molecular motors that play important roles in intracellular transport and cell division. The extent to which KIFs are involved in various transporting phenomena, as well as their regulation mechanism, are unknown. The identification of 16 new KIFs in this report doubles the existing number of KIFs known in the mouse. Conserved nucleotide sequences in the motor domain were amplified by PCR using cDNAs of mouse nervous tissue, kidney, and small intestine as templates. The new KIFs were studied with respect to their expression patterns in different tissues, chromosomal location, and molecular evolution. Our results suggest that (i) there is no apparent tendency among related subclasses of KIFs of cosegregation in chromosomal mapping, and (ii) according to their tissue distribution patterns, KIFs can be divided into two classes–i.e., ubiquitous and specific tissue-dominant. Further characterization of KIFs may elucidate unknown fundamental phenomena underlying intracellular transport. Finally, we propose a straightforward nomenclature system for the members of the mouse kinesin superfamily.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The RNA phage Qβ requires for the replication of its genome an RNA binding protein called Qβ host factor or Hfq protein. Our previous results suggested that this protein mediates the access of replicase to the 3′-end of the Qβ plus strand RNA. Here we report the results of an evolutionary experiment in which phage Qβ was adapted to an Escherichia coli Q13 host strain with an inactivated host factor (hfq) gene. This strain initially produced phage at a titer ≈10,000-fold lower than the wild-type strain and with minute plaque morphology, but after 12 growth cycles, phage titer and plaque size had evolved to levels near those of the wild-type host. RNAs isolated from adapted Qβ mutants were efficient templates for replicase without host factor in vitro. Electron microscopy showed that mutant RNAs, in contrast to wild-type RNA, efficiently interacted with replicase at the 3′-end in the absence of host factor. The same set of four mutations in the 3′-terminal third of the genome was found in several independently evolved phage clones. One mutation disrupts the base pairing of the 3′-terminal CCCoh sequence, suggesting that the host factor stimulates activity of the wild-type RNA template by melting out its 3′-end.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA templates of 33 nucleotides containing the brome mosaic virus (BMV) core subgenomic promoter were used to determine the promoter elements recognized by the BMV RNA-dependent RNA polymerase (RdRp) to initiate RNA synthesis. Nucleotides at positions −17, −14, −13, and −11 relative to the subgenomic initiation site must be maintained for interaction with the RdRp. Changes to every other nucleotide at these four positions allow predictions for the base-specific functional groups required for RdRp recognition. RdRp contact of the nucleotide at position −17 was suggested with a template competition assay. Comparison of the BMV subgenomic promoter to those from other plant and animal alphaviruses shows a remarkable degree of conservation of the nucleotides required for BMV subgenomic RNA synthesis. We show that the RdRp of the plant-infecting BMV is capable of accurately, albeit inefficiently, initiating RNA synthesis from the subgenomic promoter of the animal-infecting Semliki Forest virus. The sequence-specific recognition of RNA by the BMV RdRp is analogous to the recognition of DNA promoters by DNA-dependent RNA polymerases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HIV-1 reverse transcriptase (RT) catalyzes the synthesis of DNA from DNA or RNA templates. During this process, it must transfer its primer from one template to another RNA or DNA template. Binary complexes made of RT and a primer/template bind an additional single-stranded RNA molecule of the same nucleotide sequence as that of the DNA or RNA template. The additional RNA strand leads to a 10-fold decrease of the off-rate constant, koff, of RT from a primer/DNA template. In a binary complex of RT and a primer/template, the primer can be cross-linked to both the p66 and p51 subunits. Depending on the location of the photoreactive group in the primer, the distribution of the cross-linked primers between subunits is dependent on the nature of the template and of the additional single-stranded molecule. Greater cross-linking of the primer to p51 occurs with DNA templates, whereas cross-linking to p66 predominates with RNA templates. Excess single-stranded DNA shifts the distribution of cross-linking from p66 to p51 with RNA templates, and excess single-stranded RNA shifts the cross-linking from p51 to p66 with DNA templates. RT thus uses two primer/template binding modes depending on the nature of the template.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein acetylation has been implicated in the regulation of HIV-1 gene transcription. Here, we have exploited the activities of four native histone acetyltransferase (HAT) complexes from yeast to directly test whether acetylation regulates HIV-1 transcription in vitro. HAT activities acetylating either histone H3 (SAGA, Ada, and NuA3) or H4 (NuA4) stimulate HIV-1 transcription from preassembled nucleosomal templates in an acetyl CoA-dependent manner. HIV-1 transcription from histone-free DNA is not affected by the HATs, indicating that these activities function in a chromatin-specific fashion. For Ada and NuA4, we demonstrate that acetylation of only histone proteins mediates enhanced transcription, suggesting that these complexes facilitate transcription at least in part by modifying histones. To address a potential mechanism by which HAT complexes stimulate transcription, we performed a restriction enzyme accessibility analysis. Each of the HATs increases the cutting efficiencies of restriction endonucleases targeting the HIV-1 chromatin templates in a manner not requiring transcription, suggesting that histone acetylation leads to nucleosome remodeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During reverse transcription of retroviral RNA, synthesis of (−) strand DNA is primed by a cellular tRNA that anneals to an 18-nt primer binding site within the 5′ long terminal repeat. For (+) strand synthesis using a (−) strand DNA template linked to the tRNA primer, only the first 18 nt of tRNA are replicated to regenerate the primer binding site, creating the (+) strand strong stop DNA intermediate and providing a 3′ terminus capable of strand transfer and further elongation. On model HIV templates that approximate the (−) strand linked to natural modified or synthetic unmodified tRNA3Lys, we find that a (+) strand strong stop intermediate of the proper length is generated only on templates containing the natural, modified tRNA3Lys, suggesting that a posttranscriptional modification provides the termination signal. In the presence of a recipient template, synthesis after strand transfer occurs only from intermediates generated from templates containing modified tRNA3Lys. Reverse transcriptase from Moloney murine leukemia virus and avian myoblastosis virus shows the same requirement for a modified tRNA3Lys template. Because all retroviral tRNA primers contain the same 1-methyl-A58 modification, our results suggest that 1-methyl-A58 is generally required for termination of replication 18 nt into the tRNA sequence, generating the (+) strand intermediate, strand transfer, and subsequent synthesis of the entire (+) strand. The possibility that the host methyl transferase responsible for methylating A58 may provide a target for HIV chemotherapy is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-range promoter–enhancer interactions are a crucial regulatory feature of many eukaryotic genes yet little is known about the mechanisms involved. Using cloned chicken βA-globin genes, either individually or within the natural chromosomal locus, enhancer-dependent transcription is achieved in vitro at a distance of 2 kb with developmentally staged erythroid extracts. This occurs by promoter derepression and is critically dependent upon DNA topology. In the presence of the enhancer, genes must exist in a supercoiled conformation to be actively transcribed, whereas relaxed or linear templates are inactive. Distal protein–protein interactions in vitro may be favored on supercoiled DNA because of topological constraints. In this system, enhancers act primarily to increase the probability of rapid and efficient transcription complex formation and initiation. Repressor and activator proteins binding within the promoter, including erythroid-specific GATA-1, mediate this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A loxP-transposon retrofitting strategy for generating large nested deletions from one end of the insert DNA in bacterial artificial chromosomes and P1 artificial chromosomes was described recently [Chatterjee, P. K. & Coren, J. S. (1997) Nucleic Acids Res. 25, 2205–2212]. In this report, we combine this procedure with direct sequencing of nested-deletion templates by using primers located in the transposon end to illustrate its value for position-specific single-nucleotide polymorphism (SNP) discovery from chosen regions of large insert clones. A simple ampicillin sensitivity screen was developed to facilitate identification and recovery of deletion clones free of transduced transposon plasmid. This directed approach requires minimal DNA sequencing, and no in vitro subclone library generation; positionally oriented SNPs are a consequence of the method. The procedure is used to discover new SNPs as well as physically map those identified from random subcloned libraries or sequence databases. The deletion templates, positioned SNPs, and markers are also used to orient large insert clones into a contig. The deletion clone can serve as a ready resource for future functional genomic studies because each carries a mammalian cell-specific antibiotic resistance gene from the transposon. Furthermore, the technique should be especially applicable to the analysis of genomes for which a full genome sequence or radiation hybrid cell lines are unavailable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have cloned the UNI3 gene in Chlamydomonas and find that it encodes a new member of the tubulin superfamily. Although Uni3p shares significant sequence identity with α-, β-, and γ-tubulins, there is a region of Uni3p that has no similarity to tubulins or other known proteins. Mutant uni3–1 cells assemble zero, one, or two flagella. Pedigree analysis suggests that flagellar number in uni3–1 cells is a function of the age of the cell. The uniflagellate uni3–1 cells show a positional phenotype; the basal body opposite the eyespot templates the single flagellum. A percentage of uni3–1 cells also fail to orient the cleavage furrow properly, and basal bodies have been implicated in the placement of cleavage furrows in Chlamydomonas. Finally when uni3–1 cells are observed by electron microscopy, doublet rather than triplet microtubules are observed at the proximal end of the basal bodies. We propose that the Uni3 tubulin is involved in both the function and cell cycle-dependent maturation of basal bodies/centrioles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CCAAT/enhancer binding protein α (C/EBPα) and CCAAT/enhancer binding protein β (C/EBPβ) mRNAs are templates for the differential translation of several isoforms. Immunoblotting detects C/EBPαs with molecular masses of 42, 38, 30, and 20 kDa and C/EBPβs of 35, 20, and ∼8.5 kDa. The DNA-binding activities and pool levels of p42C/EBPα and p30C/EBPα in control nuclear extracts decrease significantly whereas the binding activity and protein levels of the 20-kDa isoforms increase dramatically with LPS treatment. Our studies suggest that the LPS response involves alternative translational initiation at specific in-frame AUGs, producing specific C/EBPα and C/EBPβ isoform patterns. We propose that alternative translational initiation occurs by a leaky ribosomal scanning mechanism. We find that nuclear extracts from normal aged mouse livers have decreased p42C/EBPα levels and binding activity, whereas those of p20C/EBPα and p20C/EBPβ are increased. However, translation of 42-kDa C/EBPα is not down-regulated on polysomes, suggesting that aging may affect its nuclear translocation. Furthermore, recovery of the C/EBPα- and C/EBPβ-binding activities and pool levels from an LPS challenge is delayed significantly in aged mouse livers. Thus, aged livers have altered steady-state levels of C/EBPα and C/EBPβ isoforms. This result suggests that normal aging liver exhibits characteristics of chronic stress and a severe inability to recover from an inflammatory challenge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using HeLa cells, we have developed methods to determine 1) the number of RNA polymerases that are active at any moment, 2) the number of transcription sites, and 3) the number of polymerases associated with one transcription unit. To count engaged polymerases, cells were encapsulated in agarose, permeabilized, treated with ribonuclease, and the now-truncated transcripts extended in [32P]uridine triphosphate; then, the number of growing transcripts was calculated from the total number of nucleotides incorporated and the average increment in length of the transcripts. Approximately 15,000 transcripts were elongated by polymerase I, and ∼75,000 were elongated by polymerases II and III. Transcription sites were detected after the cells were grown in bromouridine for <2.5 min, after which the resulting bromo-RNA was labeled with gold particles; electron microscopy showed that most extranucleolar transcripts were concentrated in ∼2400 sites with diameters of ∼80 nm. The number of polymerases associated with a transcription unit was counted after templates were spread over a large area; most extranucleolar units were associated with one elongating complex. These results suggest that many templates are attached in a “cloud” of loops around a site; each site, or transcription “factory,” would contain ∼30 active polymerases and associated transcripts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous proteins bend DNA upon binding, a phenomenon of potential significance for regulation of gene expression and chromatin. DNA bending is commonly predicted from the presence of electrophoretic mobility anomalies in protein–DNA complexes. However, as compared with electrophoretic methods, several DNA binding oncoprotein families do not display comparable evidence of DNA bends in x-ray structural studies. Herein, circularization kinetics and affinity measurements with prebent DNA templates were employed to assess bending and DNA structural preferences for Max and other basic helix–loop–helix/leucine zipper proteins. In this way, proteins in the Myc/Max basic helix–loop–helix/leucine zipper family were found not to bend DNA in solution but to actually stabilize DNA in an unbent configuration that resists circularization. The mobility anomaly was found to be induced by the leucine zipper protein motif, rather than structural distortions of DNA. Thus rigid protein domain structures may induce anomalous electrophoretic mobility. Moreover, the energetic preference of non-DNA bending proteins for unbent templates suggests mechanisms whereby chromatin structure may regulate transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Bacillus subtilis pyr operon is regulated by exogenous pyrimidines by a transcriptional attenuation mechanism. Transcription in vitro from pyr DNA templates specifying attenuation regions yielded terminated and read-through transcripts of the expected lengths. Addition of the PyrR regulatory protein plus UMP led to greatly increased termination. Synthetic antisense deoxyoligonucleotides were used to probe possible secondary structures in the pyr mRNA that were proposed to play roles in controlling attenuation. Oligonucleotides predicted to disrupt terminator structures suppressed termination, whereas oligonucleotides predicted to disrupt the stem of antiterminator stem-loops strongly promoted termination at the usual termination site. Oligonucleotides that disrupt a previously unrecognized stem-loop structure, called the anti-antiterminator, the formation of which interferes with formation of the downstream antiterminator, suppressed termination. We propose that transcriptional attenuation of the pyr operon is governed by switching between alternative antiterminator versus anti-antiterminator plus terminator structures, and that PyrR acts by UMP-dependent binding to and stabilization of the anti-antiterminator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proliferating cell nuclear antigen (PCNA) is a processivity factor required for DNA polymerase δ (or ɛ)-catalyzed DNA synthesis. When loaded onto primed DNA templates by replication factor C (RFC), PCNA acts to tether the polymerase to DNA, resulting in processive DNA chain elongation. In this report, we describe the identification of two separate peptide regions of human PCNA spanning amino acids 36–55 and 196–215 that bind RFC by using the surface plasmon resonance technique. Site-directed mutagenesis of residues within these regions in human PCNA identified two specific sites that affected the biological activity of PCNA. Replacement of the aspartate 41 residue by an alanine, serine, or asparagine significantly impaired the ability of PCNA to (i) support the RFC/PCNA-dependent polymerase δ-catalyzed elongation of a singly primed DNA template; (ii) stimulate RFC-catalyzed DNA-dependent hydrolysis of ATP; (iii) be loaded onto DNA by RFC; and (iv) activate RFC-independent polymerase δ-catalyzed synthesis of poly dT. Introduction of an alanine at position 210 in place of an arginine also reduced the efficiency of PCNA in supporting RFC-dependent polymerase δ-catalyzed elongation of a singly primed DNA template. However, this mutation did not significantly alter the ability of PCNA to stimulate DNA polymerase δ in the absence of RFC but substantially lowered the efficiency of RFC-catalyzed reactions. These results are in keeping with a model in which surface exposed regions of PCNA interact with RFC and the subsequent loading of PCNA onto DNA orients the elongation complex in a manner essential for processive DNA synthesis.