949 resultados para Deficient Mutants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Merlin has broad tumor-suppressor functions as its mutations have been identified in multiple benign tumors and malignant cancers. In all schwannomas, the majority of meningiomas and 1/3 of ependymomas Merlin loss is causative. In neurofibromatosis type 2, a dominantly inherited tumor disease because of the loss of Merlin, patients suffer from multiple nervous system tumors and die on average around age 40. Chemotherapy is not effective and tumor localization and multiplicity make surgery and radiosurgery challenging and morbidity is often considerable. Thus, a new therapeutic approach is needed for these tumors. Using a primary human in vitro model for Merlin-deficient tumors, we report that the Ras/Raf/mitogen-activated protein, extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) scaffold, kinase suppressor of Ras 1 (KSR1), has a vital role in promoting schwannomas development. We show that KSR1 overexpression is involved in many pathological phenotypes caused by Merlin loss, namely multipolar morphology, enhanced cell-matrix adhesion, focal adhesion and, most importantly, increased proliferation and survival. Our data demonstrate that KSR1 has a wider role than MEK1/2 in the development of schwannomas because adhesion is more dependent on KSR1 than MEK1/2. Immunoprecipitation analysis reveals that KSR1 is a novel binding partner of Merlin, which suppresses KSR1's function by inhibiting the binding between KSR1 and c-Raf. Our proteomic analysis also demonstrates that KSR1 interacts with several Merlin downstream effectors, including E3 ubiquitin ligase CRL4DCAF1. Further functional studies suggests that KSR1 and DCAF1 may co-operate to regulate schwannomas formation. Taken together, these findings suggest that KSR1 serves as a potential therapeutic target for Merlin-deficient tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microbial demand for iron is often met by the elaboration of siderophores into the surrounding medium and expression of cognate outer membrane receptors for the ferric siderophore complexes. Conditions of iron limitation, such as those encountered in vivo, cause Pseudomonas aeruginosa to express two high-affinity iron-uptake systems based on pyoverdin and pyochelin. These systems will operate both in the organism's natural habitat, soil and water, where the solubility of iron at neutral pH is extremely low, and in the human host where the availability of free iron is too low to sustain bacterial growth due to the iron-binding glycoproteins transferrin and lactoferrin. Cross-feeding and radiolabelled iron uptake experiments demonstrated that pyoverdin biosynthesis and uptake were highly heterogeneous amongst P.aeruginosa strains, that growth either in the presence of pyoverdin or pyochelin resulted in induction of specific IROMPs, and that induction of iron uptake is siderophore-specific. The P.aeruginosa Tn5 mutant PH1 is deficient in ferripyoverdin uptake and resistant to pyocin Sa, suggesting that the site of interaction of pyocin Sa is a ferripyoverdin receptor. Additional Tn5 mutants appeared to exploit different strategies to achieve pyocin Sa-resistance, involving modifications in expression of pyoverdin-mediated iron uptake, indicating that complex regulatory systems exist to enable these organisms to compete effectively for iron. Modulation of expression of IROMPs prompted a study of the mechanism of uptake of a semi-synthetic C(7) α-formamido substituted cephalosporin BRL 41897A. Sensitivity to this agent correlated with expression of the 75 kDa ferri-pyochelin receptor and demonstrated the potential of high-affinity iron uptake systems for targeting of novel antibiotics. Studies with ferri-pyoverdin uptake-deficient mutant PH1 indicated that expression of outer membrane protein G (OprG), which is usually expressed under iron-rich conditions and repressed under iron-deficient conditions, was perturbed. Attempts were made to clone the oprG gene using a degenerate probe based on the N-terminal amino acid sequence. A strongly hybridising HindIll restriction fragment was cloned and sequenced, but failed to reveal an open reading frame correspondmg to OprG. However, there appears to be good evidence that a part of the gene codmg for the hydrophilic membrane-associated ATP-binding component of a hitherto uncharacterised periplasmic- binding-protein-dependent transport system has been isolated. The full organisation and sequence of the operon, and substrate for this putative transport system, are yet: to be elucidated,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catecholic cephalosporin BRL 41897 A is resistant to β-lactamases and is taken up by bacteria via the iron transport system. The uptake of this antibiotic in E.coli uses the Fiu and Cir outer membrane proteins, whereas in P. aerugtnosa it enters via the pyochelin transport system. In this thesis mutants of K. pneumoniae resistant to BRL 41897A were isolated using TnphoA mutagenesis and used to study the mechanism of uptake of BRL 41897A by K. pneumoniae. The activity of BRL 41897A towards the parent strain (M10) was increased in iron depleted media, whereas no significant differences in the resistant (KSL) mutants were observed. Three mutants (KSL19, KSL38and KSL59) produced decreased amounts of certain iron-regulated outer membrane proteins. The uptake of 55Fe-BRL 41897A by M10 in iron-deficient medium was higher than in iron-rich medium. This result indicated the involvement of an iron transport system in the uptake of BRL 41897A by K. pneumoniae. Uptake by the KSL mutants in iron-deficient culture was higher than that by M10. This result, supported by analysis of outer membrane and periplasmic proteins of the KSL mutants, indicates that loss of one outer membrane protein can be compensated by over expression of other outer membrane and/or periplasmic proteins. However, the increased uptake of BRL 41897A by the KSL mutants did not reflect increased activity towards these strains, indicating that there are defects in the transport of BRL 41897A resulting in failure to reach the penicillin binding protein target sites in the cytoplasmic membrane. Southern blotting of chromosomal digests and sequencing in one mutant (KSL19) showed that only one copy of TnphoA was inserted into its chromosome. A putative TnphoA inserted gene in KSL19, designated kslA, carrying a signal sequence was identified. Transformation of a fragment containing the kslA gene into KSL19 cells restored the sensitivity to BRL 41897A to that of the parent strain. Data base peptide sequence searches revealed that the kslA gene in the KSL19 has some amino acid homology with the E. coli ExbD protein, which is involved in stabilisation of the TonB protein.