1000 resultados para Deep Sea Drilling Project
Resumo:
Multivariate analyses of latest Pliocene through Holocene benthic foraminifera from 61 samples from Deep-Sea Drilling Project (DSDP) Site 214, eastem Indian Ocean were carried out. The 46 highest ranked species were used in R-mode factor analysis which has enabled to the identification of three environmentally significant assemblages at Site 214. Assemblage 1 is characterized by Uvigerina hispido-costata, Osangularia culter , Gavelinopsis lobatulus, Cibicides wuellerstorfi and Karreriella baccata as principal species. This assemblage is inferred to reflect high-energy, well-oxygenated and probably low-organic carbon deep-sea environment at Site 214. Assemblage 2 is defined principally by Globocassidulina pacifica and U. proboscidea and is considered to indicate an organic carbon-rich environment which resulted from high surface productivity irrespective of dissolved oxygen content. Assemblage 3 is marked by Oridorsalis umbonatus, Textularia lythostrota, Hoeglundina elegans, Pyrgo murrhina, and Pullenia quinqueloba as principal species. This assemblage is inferred to indicate a low-organic carbon environment with high pore water oxygen concentration leading to better preservation of deep-sea sediments.
Resumo:
The isotopic ratio of strontium-87 to strontium-86 shows no detectable variation in present-day ocean water but changes slowly over millions of years. The strontium contained in carbonate shells of marine organisms records the ratio of strontium-87 to strontium-86 of the oceans at the time that the shells form. Sedimentary rocks composed of accumulated fossil carbonate shells can be dated and correlated with the use of high precision measurements of the ratio of strontium-87 to strontium-86 with a resolution that is similar to that of other techniques used in age correlation. This method may prove valuable for many geological, paleontological, paleooceanographic, and geochemical problems.
Resumo:
At all DSDP Leg 56 drilling sites, exotic pebbles occur commonly, throughout the cores. Chips of carbonate nodules occur only at Site 434 on the lower inner trench wall. Both exotic pebbles and carbonate nodule chips sometimes tend to be concentrated at particular levels of cores. Exotic pebbles are generally well rounded and consist of various rock types, such as dacite, andesite, basalt, tuff, gabbro, granodiorite, metaquartzite, biotite hornfels, lithic wacke, mudstone, etc., of which dacite occurs commonly at all the sites. Almost all pebbles at Site 436 and most at Sites 434 and 435 may have been rafted by ice. Some at the latter sites may have been derived by down-slope slumping. Carbonate nodules consist of microcrystalline dolomite, manganoan calcite, and siderite; CaCO3 content ranges from 22 to 65 per cent. They are also generally characterized by a high content of P2O5. The nodules are commonly rich in diatom remains, some of which indicate that the nodules are autochthonous. Some nodules contain abundant glass shards, with a modal refractive index of 1.499, almost identical to shards in the surrounding mud and ooze. These facts suggest that the carbonate nodules may have been formed diagenetically, in situ. This may throw light on problems of the formation of carbonate nodules in ancient "geosynclinal" sediments. It is also very important to point out that these carbonate nodules were formed within sediment deposited well below the CCD.
Resumo:
Radiolarians form a remarkable part of the fossil plankton for Cretaceous sediments of the North Atlantic. Selected sites with long-term sedimentary successions of deep facies were studied (ODP Leg 103 and DSDP Site 398 off northwest Spain and DSDP Site 603 off the east coast of the United States). Preservation of the radiolarian faunas is generally poor, and the faunal abundance and diversity reflect the diagenetic history of the host sediment rather than the original faunal productivity. Several exceptions include abundant and some well-preserved radiolarian faunas from lower Campanian, Cenomanian/Turonian boundary, upper Albian, lower Albian, and Barremian sediments. These increases in radiolarian abundance and preservation coincide with well-established Cretaceous oceanic events in the North Atlantic. Typical faunal associations of these sections are described, and faunal associations from the Cenomanian/Turonian Boundary Event are documented for the first time in the North Atlantic. The relationship of the radiolarian blooms with coeval oceanic events in the North Atlantic is also discussed.
Resumo:
A series of C2-C8 hydrocarbons (including saturated, aromatic, and olefinic compounds) from deep-frozen core samples taken during DSDP Leg 75 (Holes 530A and 532) were analyzed by a combined hydrogen-stripping/thermovaporization method. Concentrations representing both hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces vary in Hole 530A from about 10 to 15,000 ng/g of dry sediment weight depending on the lithology (organic-carbon-lean calcareous oozes versus "black shales"). Likewise, the organic-carbon-normalized C2-C8 hydrocarbon concentrations vary from 3,500 to 93,100 ng/g Corg, reflecting drastic differences in the hydrogen contents and hence the hydrocarbon potential of the kerogens. The highest concentrations measured of nearly 10**5 ng/g Corg are about two orders of magnitude below those usually encountered in Type-II kerogen-bearing source beds in the main phase of petroleum generation. Therefore, it was concluded that Hole 530A sediments, even at 1100 m depth, are in an early stage of evolution. The corresponding data from Hole 532 indicated lower amounts (3,000-9,000 ng/g Corg), which is in accordance with the shallow burial depth and immaturity of these Pliocene/late Miocene sediments. Significant changes in the light hydrocarbon composition with depth were attributed either to changes in kerogen type or to maturity related effects. Redistribution pheonomena, possibly the result of diffusion, were recognized only sporadically in Hole 530A, where several organic-carbon lean samples were enriched by migrated gaseous hydrocarbons. The core samples from Hole 530A were found to be severely contaminated by large quantities of acetone, which is routinely used as a solvent during sampling procedures on board Glomar Challenger.
Resumo:
Deep Sea Drilling Project (DSDP) studies at Site 570 on the landward slope of the Middle America Trench off Guatemala allow for the first time a quantitative estimate of the methane hydrate content in the massive mudstones deposited there. Drilling across the Guatemalan transect on DSDP Legs 67 and 84 has resulted in the greatest number of visual observations of gas hydrate in any marine area. At Site 570, a 1.5-m-long section of massive methane hydrate was unexpectedly cored in an area where none of the usual signs of gas hydrate in seismic records were present. The sediment section is similar to that recovered at the other eight sites off Guatemala, but drilling at Site 570 may have penetrated through a fault zone that provided the space for accumulation of massive gas hydrate. The methane hydrate was analyzed using the following well logs: density, sonic, resistivity, gamma-ray, caliper, neutron porosity, and temperature. The density, sonic, and resistivity logs define a 15-m-thick hydrated zone within which a 4-m-thick nearly pure hydrate section is contained. The methane gas content ranges from 240 m**3 to 1400 m**3 per m**2 of lateral extent; and if the body extends a square kilometer, its total volume of stored gas could be from 240*10**6m**3 to 1400*10**6m**3. Because the acoustic impedance of hydrate calculated from the sonic and density logs shows no anomalous values, the shape and extent of the hydrate body cannot be defined in seismic records. Thus the body is theoretically nonreflective in contrast to the base of the hydrate reflection. The base of the gas hydrate reflection is presumed to be the result of the velocity contrast between sediment containing gas hydrate and sediment containing free gas.
Resumo:
Radiolarian cherts in the Tethyan realm of Jurassic age were recently interpreted as resulting from high biosiliceous productivity along upwelling zones in subequatorial paleolatitudes the locations of which were confirmed by revised paleomagnetic estimates. However, the widespread occurrence of cherts in the Eocene suggests that cherts may not always be reliable proxies of latitude and upwelling zones. In a new survey of the global spatio-temporal distribution of Cenozoic cherts in Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) sediment cores, we found that cherts occur most frequently in the Paleocene and early Eocene, with a peak in occurrences at ~50 Ma that is coincident with the time of highest bottom water temperatures of the early Eocene climatic optimum (EECO) when the global ocean was presumably characterized by reduced upwelling efficiency and biosiliceous productivity. Cherts occur less commonly during the subsequent Eocene global cooling trend. Primary paleoclimatic factors rather than secondary diagenetic processes seem therefore to control chert formation. This timing of peak Eocene chert occurrence, which is supported by detailed stratigraphic correlations, contradicts currently accepted models that involve an initial loading of large amounts of dissolved silica from enhanced weathering and/or volcanism in a supposedly sluggish ocean of the EECO, followed during the subsequent middle Eocene global cooling by more vigorous oceanic circulation and consequent upwelling that made this silica reservoir available for enhanced biosilicification, with the formation of chert as a result of biosilica transformation during diagenesis. Instead, we suggest that basin-basin fractionation by deep-sea circulation could have raised the concentration of EECO dissolved silica especially in the North Atlantic, where an alternative mode of silica burial involving widespread direct precipitation and/or absorption of silica by clay minerals could have been operative in order to maintain balance between silica input and output during the upwelling-deficient conditions of the EECO. Cherts may therefore not always be proxies of biosiliceous productivity associated with latitudinally focused upwelling zones.
Resumo:
Sediments from the Argo Abyssal Plain (AAP), northwest of Australia, are the oldest known from the Indian Ocean and were recovered from ODP Site 765 and DSDP Site 261. New biostratigraphic and sedimentologic data from these sites, as well as reinterpretations of earlier findings, indicate that basal sediments at both localities are of Late Jurassic age and delineate a history of starved sedimentation punctuated by periodic influx of calcareous pelagic turbidites. Biostratigraphy and correlation of Upper Jurassic-Lower Cretaceous sediments is based largely on calcareous nannofossils. Both sites yielded variably preserved nannofossil successions ranging from Tithonian to Hauterivian at Site 765 and Kimmeridgian to Hauterivian at Site 261. The nannofloras are comparable to those present in the European and Atlantic Boreal and Tethyan areas, but display important differences that reflect biogeographic differentiation. The Argo region is thought to have occupied a position at the southern limit of the Tethyan nannofloral realm, thus yielding both Tethyan and Austral biogeographic features. Sedimentary successions at the two sites are grossly similar, and differences largely reflect Site 765's greater proximity to the continental margin. Jurassic sediments were deposited at rates of about 2 m/m.y. near the carbonate compensation depth (CCD) and contain winnowed concentrations of inoceramid prisms and nannofossils, redeposited layers rich in calcispheres and calcisphere debris, manganese nodules, and volcanic detritus. Lower Cretaceous and all younger sediments accumulated below the CCD at rates that were highest (about 20 m/m.y.) during mid-Cretaceous and Neogene time. Background sediment in this interval is noncalcareous claystone; turbidites dominate the sequence and are thicker and coarser grained at Site 765. AAP turbidites consist mostly of calcareous and siliceous biogenic components and volcanogenic smectite clay; they were derived from relatively deep parts of the continental margin that lay below the photic zone, but above the CCD. The Jurassic-Lower Cretaceous section is about the same thickness across the AAP; turbidites in this interval appear to have had multiple sources along the Australian margin. The Upper Cretaceous-Cenozoic section, however, is three times thicker at Site 765 than at Site 261; turbidites in this interval were derived predominantly from the south. Patterns of sedimentation across the AAP have been influenced by shifts in sea level, the CCD, and configuration of the continental margin. Major pulses of calcareous turbidite deposition occurred during Valanginian, Aptian, and Neogene time-all periods of eustatic lowstands and depressed CCD levels. Sediment redeposited on the AAP has come largely from the Australian outer shelf, continental slope, or rise, rather than the continent itself. Most terrigenous detritus was trapped in epicontinental basins that have flanked northwestern Australia since the early Mesozoic.
Resumo:
Interstitial water studies were done at 9 of the 11 sites visited in the Mississippi Fan and Orca and Pigmy Basins during DSDP Leg 96. High concentrations of sulfate were observed at Mississippi Fan Sites 616, 617, 620, and 623. The maximum sulfate value of 38.8 mM, recorded at Site 617, is the highest ever found in DSDP sediments. Hypersaline interstitial water was observed at Site 618 in Orca Basin. Concentration ratios of salinity to chlorinity and to sodium in interstitial waters are similar to those of Orca Basin bottom water, suggesting that the chemistry of interstitial water is affected by the dissolution of buried salt.
Resumo:
Samples of sediments and rocks collected at DSDP Sites 530 and 532 were analyzed for 44 major, minor, and trace elements for the following purposes: (1) to document the downhole variability in geochemistry within and between lithologic units; (2) to document trace-element enrichment, if any, in Cretaceous organic-carbon-rich black shales at Site 530; (3) to document trace-element enrichment, if any, in Neogene organic-carbon-rich sediments at Site 532; (4) to document trace-element enrichment, if any, in red claystone above basalt basement at Site 530 that might be attributed to hydrothermal activity or weathering of basalt. Results of the geochemical analyses showed that there are no significant enrichments of elements in the organic-carbon-rich sediments at Site 532, but a number of elements, notably Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn, are enriched in the Cretaceous black shales. These elements have different concentration gradients within the black-shale section, however, which suggests that there was differential mobility of trace elements during diagenesis of interbedded more-oxidized and less-oxidized sediments. There is little or no enrichment of elements from hydrothermal activity in the red claystone immediately overlying basalt basement at Site 530, but slight enrichments of several elements in the lowest meter of sediment may be related to subsea weathering of basalt