963 resultados para Decay fungus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fontanari introduced [Phys. Rev. Lett. 91, 218101 (2003)] a model for studying Muller's ratchet phenomenon in growing asexual populations. They studied two situations, either including a death probability for each newborn or not, but were able to find analytical (recursive) expressions only in the no-decay case. In this Brief Report a branching process formalism is used to find recurrence equations that generalize the analytical results of the original paper besides confirming the interesting effects their simulations revealed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The decomposition of peroxynitrite to nitrite and dioxygen at neutral pH follows complex kinetics, compared to its isomerization to nitrate at low pH. Decomposition may involve radicals or proceed by way of the classical peracid decomposition mechanism. Peroxynitrite (ONOOH/ONOO(-)) decomposition has been proposed to involve formation of peroxynitrate (O(2)NOOH/O(2)NOO(-)) at neutral pH (D. Gupta, B. Harish, R. Kissner and W. H. Koppenol, Dalton Trans., 2009, DOI: 10.1039/b905535e, see accompanying paper in this issue). Peroxynitrate is unstable and decomposes to nitrite and dioxygen. This study aimed to investigate whether O(2)NOO(-) formed upon ONOOH/ONOO(-) decomposition generates singlet molecular oxygen [O(2) ((1)Delta(g))]. As unequivocally revealed by the measurement of monomol light emission in the near infrared region at 1270 nm and by chemical trapping experiments, the decomposition of ONOO(-) or O(2)NOOH at neutral to alkaline pH generates O(2) ((1)Delta(g)) at a yield of ca. 1% and 2-10%, respectively. Characteristic light emission, corresponding to O(2) ((1)Delta(g)) monomolecular decay was observed for ONOO(-) and for O(2)NOOH prepared by reaction of H(2)O(2) with NO(2)BF(4) and of H(2)O(2) with NO(2)(-) in HClO(4). The generation of O(2) ((1)Delta(g)) from ONOO(-) increased in a concentration-dependent manner in the range of 0.1-2.5 mM and was dependent on pH, giving a sigmoid pro. le with an apparent pK(a) around pD 8.1 (pH 7.7). Taken together, our results clearly identify the generation of O(2) ((1)Delta(g)) from peroxynitrate [O(2)NOO(-) -> NO(2)(-) + O(2) ((1)Delta(g))] generated from peroxynitrite and also from the reactions of H(2)O(2) with either NO(2)BF(4) or NO(2)(-) in acidic media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the open circuit interaction of methanol and ethanol with oxidized platinum electrodes using in situ infrared spectroscopy. For methanol, it was found that formic acid is the main species formed in the initial region of the transient and that the steep decrease of the open circuit potential coincides with an explosive increase in the CO(2) production, which is followed by an increase in the coverage of adsorbed CO. For ethanol, acetaldehyde was the main product detected and only traces of dissolved CO(2) and adsorbed CO were found after the steep potential decay. In both cases, the transients were interpreted in terms of (a) the emergence of sub-surface oxygen in the beginning of the transient, where the oxide content is high, and (b) the autocatalytic production of free platinum sites for lower oxide content during the steep decay of the open circuit potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estimates of greenhouse-gas emissions from deforestation are highly uncertain because of high variability in key parameters and because of the limited number of studies providing field measurements of these parameters. One such parameter is burning efficiency, which determines how much of the original forest`s aboveground carbon stock will be released in the burn, as well as how much will later be released by decay and how much will remain as charcoal. In this paper we examined the fate of biomass from a semideciduous tropical forest in the ""arc of deforestation,"" where clearing activity is concentrated along the southern edge of the Amazon forest. We estimated carbon content, charcoal formation and burning efficiency by direct measurements (cutting and weighing) and by line-intersect sampling (LIS) done along the axis of each plot before and after burning of felled vegetation. The total aboveground dry biomass found here (219.3 Mg ha(-1)) is lower than the values found in studies that have been done in other parts of the Amazon region. Values for burning efficiency (65%) and charcoal formation (6.0%, or 5.98 Mg C ha(-1)) were much higher than those found in past studies in tropical areas. The percentage of trunk biomass lost in burning (49%) was substantially higher than has been found in previous studies. This difference may be explained by the concentration of more stems in the smaller diameter classes and the low humidity of the fuel (the dry season was unusually long in 2007, the year of the burn). This study provides the first measurements of forest burning parameters for a group of forest types that is now undergoing rapid deforestation. The burning parameters estimated here indicate substantially higher burning efficiency than has been found in other Amazonian forest types. Quantification of burning efficiency is critical to estimates of trace-gas emissions from deforestation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amazon forests are potentially globally significant sources or sinks for atmospheric carbon dioxide. In this study, we characterize the spatial trends in carbon storage and fluxes in both live and dead biomass (necromass) in two Amazonian forests, the Biological Dynamic of Forest Fragments Project (BDFFP), near Manaus, Amazonas, and the Tapajos National Forest (TNF) near Santarem, Para. We assessed coarse woody debris (CWD) stocks, tree growth, mortality, and recruitment in ground-based plots distributed across the terra firme forest at both sites. Carbon dynamics were similar within each site, but differed significantly between the sites. The BDFFP and the TNF held comparable live biomass (167 +/- 7.6 MgC.ha(-1) versus 149 +/- 6.0 MgC.ha(-1), respectively), but stocks of CWD were 2.5 times larger at TNF (16.2 +/- 1.5 MgC.ha(-1) at BDFFP, versus 40.1 +/- 3.9 MgC.ha(-1) at TNF). A model of current forest dynamics suggests that the BDFFP was close to carbon balance, and its size class structure approximated a steady state. The TNF, by contrast, showed rapid carbon accrual to live biomass (3.24 +/- 0.22 MgC.ha(-1).a(-1) in TNF, 2.59 +/- 0.16 MgC.ha(-1).a(-1) in BDFFP), which was more than offset by losses from large stocks of CWD, as well as ongoing shifts of biomass among size classes. This pattern in the TNF suggests recovery from a significant disturbance. The net loss of carbon from the TNF will likely last 10 - 15 years after the initial disturbance (controlled by the rate of decay of coarse woody debris), followed by uptake of carbon as the forest size class structure and composition continue to shift. The frequency and longevity of forests showing such disequilibruim dynamics within the larger matrix of the Amazon remains an essential question to understanding Amazonian carbon balance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basidiomycete Moniliophthora perniciosa is the causal agent of witches` broom disease of Theobroma cacao (cacao). Pathogenesis mechanisms of this hemibiotrophic fungus are largely unknown. An approach to identify putative pathogenicity genes is searching for sequences induced in mycelia grown under in vitro conditions. Using this approach, genes from M. perniciosa induced under limiting nitrogen and light were identified from a cDNA library enriched by suppression subtractive hybridization as potential putative pathogenicity genes. From the 159 identified unique sequences, 59 were annotated and classified by gene ontology. Two sequences were categorized as ""Defence genes, Virulence, and Cell response"" presumably coding for allergenic proteins, whose homologues from other fungi are inducers of animal or plant defences. Differential gene expression was evaluated by quantitative amplification of reversed transcripts (RT-qPCR) of the putative identified genes coding for the two allergenic proteins (Aspf13 and 88KD), and for the enzymes Arylsulfatase (AS); Aryl-Alcohol Oxidase; Aldo-Keto Reductase (AK); Cytochrome P450 (P450); Phenylalanine Ammonia-Lyase; and Peroxidase from mycelia grown under contrasting N concentrations. All genes were validated for differential expression, except for the putative Peroxidase. The same eight genes were analysed for expression in susceptible plants inoculated with M. perniciosa, and six were induced during the early asymptomatic stage of the disease. In infected host tissues, transcripts of 88KD and AS were found more abundant at the biotrophic phase, while those from Aspf13, AK, PAL, and P450 accumulated at the necrotrophic phase, enabling to suggest that mycelia transition from biotrophic to necrotrophic might occur earlier than currently considered. These sequences appeared to be virulence life-style genes, which encode factors or enzymes that enable invasion, colonization or intracellular survival, or manipulate host factors to benefit the pathogen`s own survival in the hostile environment. (C) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present here the sequence of the mitochondrial genome of the basidiomycete phytopathogenic hemibiotrophic fungus Moniliophthora perniciosa, causal agent of the Witches` Broom Disease in Theobroma cacao. The DNA is a circular molecule of 109103 base pairs, with 31.9 % GC, and is the largest sequenced so far. This size is due essentially to the presence of numerous non-conserved hypothetical ORFs. It contains the 14 genes coding for proteins involved in the oxidative phosphorylation, the two rRNA genes, one ORF coding for a ribosomal protein (rps3), and a set of 26 tRNA genes that recognize codons for all amino acids. Seven homing endonucleases are located inside introns. Except atp8, all conserved known genes are in the same orientation. Phylogenetic analysis based on the cox genes agrees with the commonly accepted fungal taxonomy. An uncommon feature of this mitochondrial genome is the presence of a region that contains a set of four, relatively small, nested, inverted repeats enclosing two genes coding for polymerases with an invertron-type structure and three conserved hypothetical genes interpreted as the stable integration of a mitochondrial linear plasmid. The integration of this plasmid seems to be a recent evolutionary event that could have implications in fungal biology. This sequence is available under GenBank accession number AY376688. (c) 2008 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

beta-blockers, as class, improve cardiac function and survival in heart failure (HF). However, the molecular mechanisms underlying these beneficial effects remain elusive. In the present study, metoprolol and carvedilol were used in doses that display comparable heart rate reduction to assess their beneficial effects in a genetic model of sympathetic hyperactivity-induced HF (alpha(2A)/alpha(2C)-ARKO mice). Five month-old HF mice were randomly assigned to receive either saline, metoprolol or carvedilol for 8 weeks and age-matched wild-type mice (WT) were used as controls. HF mice displayed baseline tachycardia, systolic dysfunction evaluated by echocardiography, 50% mortality rate, increased cardiac myocyte width (50%) and ventricular fibrosis (3-fold) compared with WT. All these responses were significantly improved by both treatments. Cardiomyocytes from HF mice showed reduced peak [Ca(2+)](i) transient (13%) using confocal microscopy imaging. Interestingly, while metoprolol improved [Ca(2+)](i) transient, carvedilol had no effect on peak [Ca(2+)](i) transient but also increased [Ca(2+)] transient decay dynamics. We then examined the influence of carvedilol in cardiac oxidative stress as an alternative target to explain its beneficial effects. Indeed, HF mice showed 10-fold decrease in cardiac reduced/oxidized glutathione ratio compared with WT, which was significantly improved only by carvedilol treatment. Taken together, we provide direct evidence that the beneficial effects of metoprolol were mainly associated with improved cardiac Ca(2+) transients and the net balance of cardiac Ca(2+) handling proteins while carvedilol preferentially improved cardiac redox state. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One mannanase and one of the three xylanases produced by Ceriporiopsis subvermispora grown on Pinus taeda wood chips were characterized. A combination of ion exchange chromatography and SDS-PAGE data revealed the existence of a high-molecular-weight mannanase of 150 kDa that was active against galactoglucomannan and xylan, Its activity was optimal at pH 4.5. The K(m) value with galactoglucomannan as substrate was 0.50 mg ml (1). One xylanase with molecular mass of 79 kDa was also purified and characterized. Its activity was optimal at 60 degrees C and pH 8.0. Its K(m) value with birchwood xylan as substrate was 1.65 mg ml (1). Both the mannanase and the 79 kDa xylanase displayed relatively high activity on carboxymethyl cellulose. The sensitivity of the xylanase and mannanase to various salts was evaluated. None of the tested salts inhibited the xylanase, but Mn(+2), Fe(+3), and Cu(+2) were strong inhibitors for the mannanase. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to characterize the delignification effluent originating from the delignification industry and evaluate the combination of the fungus and photocatalytic process (TiO(2)/UV system) for the treatment of this effluent. The delignification effluent has proven harmful to the environment because it presents high color (3516 CU), total phenol (876 mg/L and TOC (1599 mg/L) and is also highly toxic even in a low concentration. The results of photocatalysis were 11%, 25% and 13% higher for reductions in color, total phenol and TOC, respectively. The combined treatments presented benefits when compared to the non-combined treatments. Fungus and photocatalysis in combination proved to be the best treatment, reducing the color, total phenol, toxicity (inhibition of Escherichia coli growth) and TOC by 94.2%, 92.6%, 4.9% and 62%, respectively. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biopulping fundamentals, technology and mechanisms are reviewed in this article. Mill evaluation of Eucalyptus grandis wood chips biotreated by Ceriporiopsis subvermispora on a 50-tonne pilot-plant demonstrated that equivalent energy savings can be obtained in lab- and mill-scale biopulping. Some drawbacks concerning limited improvements in pulp strength and contamination of the chip pile with opportunist fungi have been observed. The use of pre-cultured wood chips as inoculum seed for the biotreatment process minimized contamination problems related to the use of blended mycelium and corn-steep liquor in the inoculation step. Alkaline wash restored part of the brightness in biopulps and marketable brightness values were obtained by one-stage bleaching with 5% H2O2 when bio-TMP pulps were under evaluation. Considering the current scenario, the understanding of biopulping mechanisms has gained renewed attention because more resistant and competitive fungal species could be selected with basis on a function-directed screening project. A series of studies aimed to elucidate structural changes in lignin during wood biodegradation by C. subvermispora had indicated that lignin depolymerization occurs during initial stages of wood biotreatment. Aromatic hydroxyls did not increase with the split of aryl-ether linkages, suggesting that the ether-cleavage-products remain as quitione-type structures. On the other hand, cellulose is more resistant to the attack by C subvermispora. MnP-initiated lipid peroxidation reactions have been proposed to explain degradation of non-phenolic lignin substructures by C subvermispora, while the lack of cellobiohydrolases and the occurrence of systems able to suppress Fenton`s reaction in the cultures have explained non-efficient cellulose degradation by this biopulping fungus. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In biopulping, efficient wood colonization by a selected white-rot fungus depends on previous wood chip decontamination to avoid the growth of primary molds. Although simple to perform in the laboratory, in large-scale biopulping trials, complete wood decontamination is difficult to achieve. Furthermore, the use of fungal growth promoters such as corn steep liquor enhances the risk of culture contamination. This paper evaluates the ability of the biopulping fungus Ceriporiopsis subvermispora to compete with indigenous fungi in cultures of fresh or poorly decontaminated Eucalyptus grandis wood chips. While cultures containing autoclaved wood chips were completely free of contaminants, primary molds grew rapidly when non-autoclaved wood chips were used, resulting in heavily contaminated cultures, regardless of the C. subvermispora inoculum/wood ratio evaluated (5, 50 and 3000 mg mycelium kg(-1) wood). Studies on benomyl-amended medium suggested that the fungi involved competed by consumption of the easily available nutrient sources, with C. subvermispora less successful than the contaminant fungi. The use of acid-washed wood chips decreased the level of such contaminant fungi, but production of manganese peroxidase and xylanases was also decreased under these conditions. Nevertheless, chemithermomechanical pulping of acid-washed samples biotreated under non-aseptic conditions gave similar fibrillation improvements compared to samples subjected to the standard biodegradation process using autoclaved wood chips.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of different culture conditions have been evaluated concerning the extracellular enzyme activities of the white-rot fungus Ceriporiopsis subvermispora growing on Eucalyptus grandis wood. The consequence of the varied fungal pretreatment on a subsequent chemithermomechanical pulping (CTMP) was addressed. In all cultures, manganese peroxidase (MnP) and xylanase were the predominant extracellular enzymes. The biopulping efficiency was evaluated based on the amount of fiber bundles obtained after the first fiberizing step and the fibrillation levels of refined pulps. It was found that the MnP levels in the cultures correlated positively with the biopulping benefits. On the other hand, xylanase and total oxalate levels did not vary significantly. Accordingly, it was not possible to determine whether MnP accomplishes the effect alone or depends on synergic action of other extracellular agents. Pulp strength and fiber size distribution were also evaluated. The average fiber length of CTMP pulps prepared from untreated wood chips was 623 mu m. Analogous values were observed for most of the biopulps; however, significant amounts of shorter fibers were found in the biopulp prepared from wood chips biotreated in cultures supplemented with glucose plus corn-steep liquor. Despite evidence of reduced average fiber length, biopulps prepared from these wood chips presented the highest improvement in tensile indexes (+28% at 23 degrees Schopper-Riegler).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pinus taeda wood chips were treated with the biopulping fungus Ceriporiopsis subvermispora in soybean-oil-amended cultures The secretion of oxalic acid and the accumulation of thiobarbituric acid reactive substances were significantly increased in soybean-oil-amended cultures By contrast the secretion of hydrolytic and oxidative enzymes was not altered in the cultures Biotreated wood samples were characterized for weight and component losses as well as by in-situ thioacidolysis Residual lignins were also extracted from biotreated wood using a mild-non-razing extraction procedure The lignins were characterized by (31)P nuclear magnetic resonance ((31)P-NMR) spectroscopy Soybean oil amendment in the cultures was found to affect lignin degradation routes however it inhibited depolymerization reactions detectable in the residual lignin that was retained in the biotreated wood As a consequence chemithermomechanical pulping of the biotreated samples was not improved by soybean oil amendment in the cultures Crown Copyright (C) 2010 Published by Elsevier Ltd All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugarcane bagasse hemicellulose was isolated in a one-step chemical extraction using hydrogen peroxide in alkaline media. The polysaccharide containing 80.9% xylose and small amounts of L-arabinose, 4-O-methyl-D-glucuronic acid and glucose, was hydrolyzed by crude enzymatic extracts from Thermoascus aurantiacus at 50 degrees C. Conditions of enzymatic hydrolysis leading to the best yields of xylose and xylooligosaccharides (DP 2-5) were investigated using substrate concentration in the range 0.5-3.5% (w/v), enzyme load 40-80 U/g of the substrate, and reaction time from 3 to 96 h, applying a 22 factorial design. The maximum conversion to xylooligosaccharides (37.1%) was obtained with 2.6% of substrate and xylanase load of 60 U/g. The predicted maximum yield of xylobiose by a polynomial model was 41.6%. Crude enzymatic extract of T. aurantiacus generate from sugarcane bagasse hemicellulose 39% of xylose, 59% of xylobiose, and 2% of other xylooligosaccharides.