915 resultados para Data reporting
Resumo:
This research aims to develop a reliable density estimation method for signalised arterials based on cumulative counts from upstream and downstream detectors. In order to overcome counting errors associated with urban arterials with mid-link sinks and sources, CUmulative plots and Probe Integration for Travel timE estimation (CUPRITE) is employed for density estimation. The method, by utilizing probe vehicles’ samples, reduces or cancels the counting inconsistencies when vehicles’ conservation is not satisfied within a section. The method is tested in a controlled environment, and the authors demonstrate the effectiveness of CUPRITE for density estimation in a signalised section, and discuss issues associated with the method.
Resumo:
Background: Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed. Methods: We used a discovery GWAS dataset (8,844 samples, 2,124 cases and 6,720 controls) and a multi-step logistic regression protocol to identify novel genetic associations. The emerging genetic profile included 350 independent markers and was used to calculate and estimate the cumulative genetic risk in an independent validation dataset (3,606 samples). Analysis of covariance (ANCOVA) was implemented to compare clinical characteristics of individuals with various degrees of genetic risk. Gene ontology and pathway enrichment analysis was done using the DAVID functional annotation tool, the GO Tree Machine, and the Pathway-Express profiling tool. Results: In the discovery dataset, the median cumulative genetic risk (P-Hat) was 0.903 and 0.007 in the case and control groups, respectively, together with 79.9% classification sensitivity and 95.8% specificity. The identified profile shows a significant enrichment of genes involved in the immune response, cell adhesion, cell communication/ signaling, nervous system development, and neuronal signaling, including ionotropic glutamate receptors, which have been implicated in the pathological mechanism driving neurodegeneration. In the validation dataset, the median cumulative genetic risk was 0.59 and 0.32 in the case and control groups, respectively, with classification sensitivity 62.3% and specificity 75.9%. No differences in disease progression or T2-lesion volumes were observed among four levels of predicted genetic risk groups (high, medium, low, misclassified). On the other hand, a significant difference (F = 2.75, P = 0.04) was detected for age of disease onset between the affected misclassified as controls (mean = 36 years) and the other three groups (high, 33.5 years; medium, 33.4 years; low, 33.1 years). Conclusions: The results are consistent with the polygenic model of inheritance. The cumulative genetic risk established using currently available genome-wide association data provides important insights into disease heterogeneity and completeness of current knowledge in MS genetics.
Resumo:
We present a method for optical encryption of information, based on the time-dependent dynamics of writing and erasure of refractive index changes in a bulk lithium niobate medium. Information is written into the photorefractive crystal with a spatially amplitude modulated laser beam which when overexposed significantly degrades the stored data making it unrecognizable. We show that the degradation can be reversed and that a one-to-one relationship exists between the degradation and recovery rates. It is shown that this simple relationship can be used to determine the erasure time required for decrypting the scrambled index patterns. In addition, this method could be used as a straightforward general technique for determining characteristic writing and erasure rates in photorefractive media.
Resumo:
Background: Sleep disturbance in midlife women has been studied extensively, although less is known about sleep after menopause. This study examined the relative impact of socio-demographics, modifiable lifestyle factors, and health status on sleep disturbance in post-menopausal women from Queensland, Australia. Methods: The longitudinal Healthy Aging of Women (HOW) study examines health-related quality of life (HRQOL measured by SF-12©), chronic illness, modifiable lifestyle factors such as physical activity, alcohol consumption, smoking, and sleep disturbance (General Sleep Disturbance Scale, GSDS ≥ 43 represent poor sleep) in midlife and older women from low and high socio-economic, rural and urban areas of South-East Queensland, Australia. This paper presents cross-sectional data from the 322 women, aged 60-70 years, participating in the HOW study in 2011. Results: For women in this study, sleep disturbance was relatively common, with 23% (n = 83) reporting poor sleeping (GSDS ≥ 43). Sleep disturbance scores were strongly correlated with being unemployed or on a disability support pension (β = 18.69, P < 0.01), sedentary lifestyle (β = 23.84, P < 0.01), and lower mental (β = -0.60, P <0.01) and physical health-related quality of life scores (β = -0.32, P = 0.01), and these variables explained almost one third of variance in sleep disturbance scores (ηρ² = 29%). Conclusions: Multivariable analysis revealed that sleep disturbance was correlated with physical and mental health-related quality of life, disability, and sedentary lifestyle, but not other lifestyle and socio-demographic characteristics. It may be however, that modifiable lifestyle factors may indirectly impact on sleep by influencing health status.
Resumo:
During the current (1995-present) eruptive phase of the Soufrière Hills volcano on Montserrat, voluminous pyroclastic flows entered the sea off the eastern flank of the island, resulting in the deposition of well-defined submarine pyroclastic lobes. Previously reported bathymetric surveys documented the sequential construction of these deposits, but could not image their internal structure, the morphology or extent of their base, or interaction with the underlying sediments. We show, by combining these bathymetric data with new high-resolution three dimensional (3D) seismic data, that the sequence of previously detected pyroclastic deposits from different phases of the ongoing eruptive activity is still well preserved. A detailed interpretation of the 3D seismic data reveals the absence of significant (> 3. m) basal erosion in the distal extent of submarine pyroclastic deposits. We also identify a previously unrecognized seismic unit directly beneath the stack of recent lobes. We propose three hypotheses for the origin of this seismic unit, but prefer an interpretation that the deposit is the result of the subaerial flank collapse that formed the English's Crater scarp on the Soufrière Hills volcano. The 1995-recent volcanic activity on Montserrat accounts for a significant portion of the sediments on the southeast slope of Montserrat, in places forming deposits that are more than 60. m thick, which implies that the potential for pyroclastic flows to build volcanic island edifices is significant.
Resumo:
The Bluetooth technology is being increasingly used to track vehicles throughout their trips, within urban networks and across freeway stretches. One important opportunity offered by this type of data is the measurement of Origin-Destination patterns, emerging from the aggregation and clustering of individual trips. In order to obtain accurate estimations, however, a number of issues need to be addressed, through data filtering and correction techniques. These issues mainly stem from the use of the Bluetooth technology amongst drivers, and the physical properties of the Bluetooth sensors themselves. First, not all cars are equipped with discoverable Bluetooth devices and the Bluetooth-enabled vehicles may belong to some small socio-economic groups of users. Second, the Bluetooth datasets include data from various transport modes; such as pedestrian, bicycles, cars, taxi driver, buses and trains. Third, the Bluetooth sensors may fail to detect all of the nearby Bluetooth-enabled vehicles. As a consequence, the exact journey for some vehicles may become a latent pattern that will need to be extracted from the data. Finally, sensors that are in close proximity to each other may have overlapping detection areas, thus making the task of retrieving the correct travelled path even more challenging. The aim of this paper is twofold. We first give a comprehensive overview of the aforementioned issues. Further, we propose a methodology that can be followed, in order to cleanse, correct and aggregate Bluetooth data. We postulate that the methods introduced by this paper are the first crucial steps that need to be followed in order to compute accurate Origin-Destination matrices in urban road networks.
Resumo:
This thesis is a study for automatic discovery of text features for describing user information needs. It presents an innovative data-mining approach that discovers useful knowledge from both relevance and non-relevance feedback information. The proposed approach can largely reduce noises in discovered patterns and significantly improve the performance of text mining systems. This study provides a promising method for the study of Data Mining and Web Intelligence.
Resumo:
Literature is limited in its knowledge of the Bluetooth protocol based data acquisition process and in the accuracy and reliability of the analysis performed using the data. This paper extends the body of knowledge surrounding the use of data from the Bluetooth Media Access Control Scanner (BMS) as a complementary traffic data source. A multi layer simulation model named Traffic and Communication Simulation (TCS) is developed. TCS is utilised to model the theoretical properties of the BMS data and analyse the accuracy and reliability of travel time estimation using the BMS data.
Resumo:
A significant amount of speech data is required to develop a robust speaker verification system, but it is difficult to find enough development speech to match all expected conditions. In this paper we introduce a new approach to Gaussian probabilistic linear discriminant analysis (GPLDA) to estimate reliable model parameters as a linearly weighted model taking more input from the large volume of available telephone data and smaller proportional input from limited microphone data. In comparison to a traditional pooled training approach, where the GPLDA model is trained over both telephone and microphone speech, this linear-weighted GPLDA approach is shown to provide better EER and DCF performance in microphone and mixed conditions in both the NIST 2008 and NIST 2010 evaluation corpora. Based upon these results, we believe that linear-weighted GPLDA will provide a better approach than pooled GPLDA, allowing for the further improvement of GPLDA speaker verification in conditions with limited development data.
Resumo:
Aim To examine the mediating effect of coping strategies on the consequences of nursing and non-nursing (administrative) stressors on the job satisfaction of nurses during change management. Background Organisational change can result in an increase in nursing and nonnursing- related stressors, which can have a negative impact on the job satisfaction of nurses employed in health-care organisations. Method Matched data were collected in 2009 via an online survey at two timepoints (six months apart). Results Partial least squares path analysis revealed a significant causal relationship between Time 1 administrative and role stressors and an increase in nursing-specific stressors in Time 2. A significant relationship was also identified between job-specific nursing stressors and the adoption of effective coping strategies to deal with increased levels of change-induced stress and strain and the likelihood of reporting higher levels of job satisfaction in Time 2. Conclusions The effectiveness of coping strategies is critical in helping nurses to deal with the negative consequences of organisational change. Implications for nursing management This study shows that there is a causal relationship between change, non-nursing stressors and job satisfaction. Senior management should implement strategies aimed at reducing nursing and nonnursing stress during change in order to enhance the job satisfaction of nurses. Keywords: Australia, change management, job satisfaction, nursing and non-nursing stressors, public and non-profit sector
Resumo:
Travel time prediction has long been the topic of transportation research. But most relevant prediction models in the literature are limited to motorways. Travel time prediction on arterial networks is challenging due to involving traffic signals and significant variability of individual vehicle travel time. The limited availability of traffic data from arterial networks makes travel time prediction even more challenging. Recently, there has been significant interest of exploiting Bluetooth data for travel time estimation. This research analysed the real travel time data collected by the Brisbane City Council using the Bluetooth technology on arterials. Databases, including experienced average daily travel time are created and classified for approximately 8 months. Thereafter, based on data characteristics, Seasonal Auto Regressive Integrated Moving Average (SARIMA) modelling is applied on the database for short-term travel time prediction. The SARMIA model not only takes the previous continuous lags into account, but also uses the values from the same time of previous days for travel time prediction. This is carried out by defining a seasonality coefficient which improves the accuracy of travel time prediction in linear models. The accuracy, robustness and transferability of the model are evaluated through comparing the real and predicted values on three sites within Brisbane network. The results contain the detailed validation for different prediction horizons (5 min to 90 minutes). The model performance is evaluated mainly on congested periods and compared to the naive technique of considering the historical average.
Resumo:
Recently, vision-based systems have been deployed in professional sports to track the ball and players to enhance analysis of matches. Due to their unobtrusive nature, vision-based approaches are preferred to wearable sensors (e.g. GPS or RFID sensors) as it does not require players or balls to be instrumented prior to matches. Unfortunately, in continuous team sports where players need to be tracked continuously over long-periods of time (e.g. 35 minutes in field-hockey or 45 minutes in soccer), current vision-based tracking approaches are not reliable enough to provide fully automatic solutions. As such, human intervention is required to fix-up missed or false detections. However, in instances where a human can not intervene due to the sheer amount of data being generated - this data can not be used due to the missing/noisy data. In this paper, we investigate two representations based on raw player detections (and not tracking) which are immune to missed and false detections. Specifically, we show that both team occupancy maps and centroids can be used to detect team activities, while the occupancy maps can be used to retrieve specific team activities. An evaluation on over 8 hours of field hockey data captured at a recent international tournament demonstrates the validity of the proposed approach.
Resumo:
It has been reported that poor nutritional status, in the form of weight loss and resulting body mass index (BMI) changes, is an issue in people with Parkinson's disease (PWP). The symptoms resulting from Parkinson's disease (PD) and the side effects of PD medication have been implicated in the aetiology of nutritional decline. However, the evidence on which these claims are based is, on one hand, contradictory, and on the other, restricted primarily to otherwise healthy PWP. Despite the claims that PWP suffer from poor nutritional status, evidence is lacking to inform nutrition-related care for the management of malnutrition in PWP. The aims of this thesis were to better quantify the extent of poor nutritional status in PWP, determine the important factors differentiating the well-nourished from the malnourished and evaluate the effectiveness of an individualised nutrition intervention on nutritional status. Phase DBS: Nutritional status in people with Parkinson's disease scheduled for deep-brain stimulation surgery The pre-operative rate of malnutrition in a convenience sample of people with Parkinson's disease (PWP) scheduled for deep-brain stimulation (DBS) surgery was determined. Poorly controlled PD symptoms may result in a higher risk of malnutrition in this sub-group of PWP. Fifteen patients (11 male, median age 68.0 (42.0 – 78.0) years, median PD duration 6.75 (0.5 – 24.0) years) participated and data were collected during hospital admission for the DBS surgery. The scored PG-SGA was used to assess nutritional status, anthropometric measures (weight, height, mid-arm circumference, waist circumference, body mass index (BMI)) were taken, and body composition was measured using bioelectrical impedance spectroscopy (BIS). Six (40%) of the participants were malnourished (SGA-B) while 53% reported significant weight loss following diagnosis. BMI was significantly different between SGA-A and SGA-B (25.6 vs 23.0kg/m 2, p<.05). There were no differences in any other variables, including PG-SGA score and the presence of non-motor symptoms. The conclusion was that malnutrition in this group is higher than that in other studies reporting malnutrition in PWP, and it is under-recognised. As poorer surgical outcomes are associated with poorer pre-operative nutritional status in other surgeries, it might be beneficial to identify patients at nutritional risk prior to surgery so that appropriate nutrition interventions can be implemented. Phase I: Nutritional status in community-dwelling adults with Parkinson's disease The rate of malnutrition in community-dwelling adults (>18 years) with Parkinson's disease was determined. One hundred twenty-five PWP (74 male, median age 70.0 (35.0 – 92.0) years, median PD duration 6.0 (0.0 – 31.0) years) participated. The scored PG-SGA was used to assess nutritional status, anthropometric measures (weight, height, mid-arm circumference (MAC), calf circumference, waist circumference, body mass index (BMI)) were taken. Nineteen (15%) of the participants were malnourished (SGA-B). All anthropometric indices were significantly different between SGA-A and SGA-B (BMI 25.9 vs 20.0kg/m2; MAC 29.1 – 25.5cm; waist circumference 95.5 vs 82.5cm; calf circumference 36.5 vs 32.5cm; all p<.05). The PG-SGA score was also significantly lower in the malnourished (2 vs 8, p<.05). The nutrition impact symptoms which differentiated between well-nourished and malnourished were no appetite, constipation, diarrhoea, problems swallowing and feel full quickly. This study concluded that malnutrition in community-dwelling PWP is higher than that documented in community-dwelling elderly (2 – 11%), yet is likely to be under-recognised. Nutrition impact symptoms play a role in reduced intake. Appropriate screening and referral processes should be established for early detection of those at risk. Phase I: Nutrition assessment tools in people with Parkinson's disease There are a number of validated and reliable nutrition screening and assessment tools available for use. None of these tools have been evaluated in PWP. In the sample described above, the use of the World Health Organisation (WHO) cut-off (≤18.5kg/m2), age-specific BMI cut-offs (≤18.5kg/m2 for under 65 years, ≤23.5kg/m2 for 65 years and older) and the revised Mini-Nutritional Assessment short form (MNA-SF) were evaluated as nutrition screening tools. The PG-SGA (including the SGA classification) and the MNA full form were evaluated as nutrition assessment tools using the SGA classification as the gold standard. For screening, the MNA-SF performed the best with sensitivity (Sn) of 94.7% and specificity (Sp) of 78.3%. For assessment, the PG-SGA with a cut-off score of 4 (Sn 100%, Sp 69.8%) performed better than the MNA (Sn 84.2%, Sp 87.7%). As the MNA has been recommended more for use as a nutrition screening tool, the MNA-SF might be more appropriate and take less time to complete. The PG-SGA might be useful to inform and monitor nutrition interventions. Phase I: Predictors of poor nutritional status in people with Parkinson's disease A number of assessments were conducted as part of the Phase I research, including those for the severity of PD motor symptoms, cognitive function, depression, anxiety, non-motor symptoms, constipation, freezing of gait and the ability to carry out activities of daily living. A higher score in all of these assessments indicates greater impairment. In addition, information about medical conditions, medications, age, age at PD diagnosis and living situation was collected. These were compared between those classified as SGA-A and as SGA-B. Regression analysis was used to identify which factors were predictive of malnutrition (SGA-B). Differences between the groups included disease severity (4% more severe SGA-A vs 21% SGA-B, p<.05), activities of daily living score (13 SGA-A vs 18 SGA-B, p<.05), depressive symptom score (8 SGA-A vs 14 SGA-B, p<.05) and gastrointestinal symptoms (4 SGA-A vs 6 SGA-B, p<.05). Significant predictors of malnutrition according to SGA were age at diagnosis (OR 1.09, 95% CI 1.01 – 1.18), amount of dopaminergic medication per kg body weight (mg/kg) (OR 1.17, 95% CI 1.04 – 1.31), more severe motor symptoms (OR 1.10, 95% CI 1.02 – 1.19), less anxiety (OR 0.90, 95% CI 0.82 – 0.98) and more depressive symptoms (OR 1.23, 95% CI 1.07 – 1.41). Significant predictors of a higher PG-SGA score included living alone (β=0.14, 95% CI 0.01 – 0.26), more depressive symptoms (β=0.02, 95% CI 0.01 – 0.02) and more severe motor symptoms (OR 0.01, 95% CI 0.01 – 0.02). More severe disease is associated with malnutrition, and this may be compounded by lack of social support. Phase II: Nutrition intervention Nineteen of the people identified in Phase I as requiring nutrition support were included in Phase II, in which a nutrition intervention was conducted. Nine participants were in the standard care group (SC), which received an information sheet only, and the other 10 participants were in the intervention group (INT), which received individualised nutrition information and weekly follow-up. INT gained 2.2% of starting body weight over the 12 week intervention period resulting in significant increases in weight, BMI, mid-arm circumference and waist circumference. The SC group gained 1% of starting weight over the 12 weeks which did not result in any significant changes in anthropometric indices. Energy and protein intake (18.3kJ/kg vs 3.8kJ/kg and 0.3g/kg vs 0.15g/kg) increased in both groups. The increase in protein intake was only significant in the SC group. The changes in intake, when compared between the groups, were no different. There were no significant changes in any motor or non-motor symptoms or in "off" times or dyskinesias in either group. Aspects of quality of life improved over the 12 weeks as well, especially emotional well-being. This thesis makes a significant contribution to the evidence base for the presence of malnutrition in Parkinson's disease as well as for the identification of those who would potentially benefit from nutrition screening and assessment. The nutrition intervention demonstrated that a traditional high protein, high energy approach to the management of malnutrition resulted in improved nutritional status and anthropometric indices with no effect on the presence of Parkinson's disease symptoms and a positive effect on quality of life.
Resumo:
Presently organisations engage in what is termed as Global Business Transformation Projects [GBTPs], for consolidating, innovating, transforming and restructuring their processes and business strategies while undergoing fundamental change. Culture plays an important role in global business transformation projects as these involve people of different cultural backgrounds and span across countries, industries and disciplinary boundaries. Nevertheless, there is scant empirical research on how culture is conceptualised beyond national and organisational cultures but also on how culture is to be taken into account and dealt with within global business transformation projects. This research is situated in a business context and discovers a theory that aids in describing and dealing with culture. It draws on the lived experiences of thirty-two senior management practitioners, reporting on more than sixty-one global business transformation projects in which they were actively involved. The research method used is a qualitative and interpretive one and applies a grounded theory approach, with rich data generated through interviews. In addition, vignettes were developed to illustrate the derived theoretical models. The findings from this study contribute to knowledge in multiple ways. First, it provides a holistic account of global business transformation projects that describe the construct of culture by the elements of culture types, cultural differences and cultural diversity. A typology of culture types has been developed which enlarges the view of culture beyond national and organisational culture including an industry culture, professional service firm culture and 'theme' culture. The amalgamation of the culture types instantiated in a global business transformation project compromises its project culture. Second, the empirically grounded process for managing culture in global business transformation projects integrates the stages of recognition, understanding and management as well as the enablement providing a roadmap for dealing with culture in global business transformation projects. Third, this study identified contextual variables to global business transformation projects, which provide the means of describing the environment global business transformation projects are situated, influence the construct of culture and inform the process for managing culture. Fourth, the contribution to the research method is the positioning of interview research as a strategy for data generation and the detailed documentation applying grounded theory to discover theory.