855 resultados para DRUG-RESISTANCE GENE


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The blood–brain barrier and a blood–cerebrospinal-fluid (CSF) barrier function together to isolate the brain from circulating drugs, toxins, and xenobiotics. The blood–CSF drug-permeability barrier is localized to the epithelium of the choroid plexus (CP). However, the molecular mechanisms regulating drug permeability across the CP epithelium are defined poorly. Herein, we describe a drug-permeability barrier in human and rodent CP mediated by epithelial-specific expression of the MDR1 (multidrug resistance) P glycoprotein (Pgp) and the multidrug resistance-associated protein (MRP). Noninvasive single-photon-emission computed tomography with 99mTc-sestamibi, a membrane-permeant radiopharmaceutical whose transport is mediated by both Pgp and MRP, shows a large blood-to-CSF concentration gradient across intact CP epithelium in humans in vivo. In rats, pharmacokinetic analysis with 99mTc-sestamibi determined the concentration gradient to be greater than 100-fold. In membrane fractions of isolated native CP from rat, mouse, and human, the 170-kDa Pgp and 190-kDa MRP are identified readily. Furthermore, the murine proteins are absent in CP isolated from their respective mdr1a/1b(−/−) and mrp(−/−) gene knockout littermates. As determined by immunohistochemical and drug-transport analysis of native CP and polarized epithelial cell cultures derived from neonatal rat CP, Pgp localizes subapically, conferring an apical-to-basal transepithelial permeation barrier to radiolabeled drugs. Conversely, MRP localizes basolaterally, conferring an opposing basal-to-apical drug-permeation barrier. Together, these transporters may coordinate secretion and reabsorption of natural product substrates and therapeutic drugs, including chemotherapeutic agents, antipsychotics, and HIV protease inhibitors, into and out of the central nervous system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many examples of extreme virus resistance and posttranscriptional gene silencing of endogenous or reporter genes have been described in transgenic plants containing sense or antisense transgenes. In these cases of either cosuppression or antisense suppression, there appears to be induction of a surveillance system within the plant that specifically degrades both the transgene and target RNAs. We show that transforming plants with virus or reporter gene constructs that produce RNAs capable of duplex formation confer virus immunity or gene silencing on the plants. This was accomplished by using transcripts from one sense gene and one antisense gene colocated in the plant genome, a single transcript that has self-complementarity, or sense and antisense transcripts from genes brought together by crossing. A model is presented that is consistent with our data and those of other workers, describing the processes of induction and execution of posttranscriptional gene silencing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BRAF is a major oncoprotein and oncogenic mutations in BRAF are found in a significant number of cancers, including melanoma, thyroid cancer, colorectal cancer and others. Consequently, BRAF inhibitors have been developed as treatment options for cancers with BRAF mutations which have shown some success in improving patient outcomes in clinical trials. Development of resistance to BRAF kinase inhibitors is common, however, and overcoming this resistance is an area of significant concern for clinicians, patients and researchers alike. In this review, we identify the mechanisms of BRAF kinase inhibitor resistance and discuss the implications for strategies to overcome this resistance in the context of new approaches such as multi-kinase targeted therapies and emerging RNA interference based technologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Amplification of the Plasmodium falciparum multidrug resistance 1 gene (pfmdr1) has been implicated in multidrug resistance, including in vitro resistance to artelinic acid (AL). The stability and fitness of having multiple copies of pfmdr1 are important factors due to their potential effects on the resistance phenotype of parasites. These factors were investigated by using an AL-resistant line of P. falciparum (W2AL80) and clones originating from W2AL80. A rapid reduction in pfmdr1 copy number (CN) was observed in the uncloned W2AL80 line; 63% of this population reverted to a CN of <3 without exposure to the drug. Deamplification of the pfmdr1 amplicon was then determined in three clones, each initially containing three copies of pfmdr1. Interestingly, two outcomes were observed during 3 months without drug pressure. In one clone, parasites with fewer than 3 copies of pfmdr1 emerged rapidly. In two other clones, the reversion was significantly delayed. In all subclones, the reduction in pfmdr1 CN involved the deamplification of the entire amplicon (19 genes). Importantly, deamplification of the pfmdr1 amplicon resulted in partial reversal of resistance to AL and increased susceptibility to mefloquine. These results demonstrate that multiple copies of the pfmdr1-containing amplicon in AL-resistant parasites are unstable when drug pressure is withdrawn and have practical implications for the maintenance and spread of parasites resistant to artemisinin derivatives.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phosphine, a widely used fumigant for the protection of stored grain from insect pests, kills organisms indirectly by inducing oxidative stress. High levels of heritable resistance to phosphine in the insect pest of stored grain, Rhyzopertha dominica have been detected in Asia, Australia and South America. In order to understand the evolution of phosphine resistance and to isolate the responsible genes, we have undertaken genetic linkage analysis of fully sensitive (QRD14), moderately resistant (QRD369) and highly resistant (QRD569) strains of R. dominica collected in Australia. We previously determined that two loci, rph1 and rph2, confer high-level resistance on strain QRD569, which was collected in 1997. We have now confirmed that rph1 is responsible for the moderate resistance of strain QRD369, which was collected in 1990, and is shared with a highly resistant strain from the same geographical region, QRD569. In contrast, rph2 by itself confers only very weak resistance, either as a heterozygote or as a homozygote and was not discovered in the field until weak resistance (probably due to rph1) had become ubiquitous. Thus, high-level resistance against phosphine has evolved via stepwise acquisition of resistance alleles, first at rph1 and thereafter at rph2. The semi-dominance of rph2 together with the synergistic interaction between rph1 and rph2 would have led to rapid selection for homozygosity. A lack of visible fitness cost associated with alleles at either locus suggests that the resistance phenotype will persist in the field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resistance against synthetic pyrethroid (SP) products for the control of cattle ticks in Australia was detected in the field in 1984, within a very short time of commercial introduction. We have identified a mutation in the domain II S4-5 linker of the para-sodium channel that is associated with resistance to SPs in the cattle tick Rhipicephalus (Boophilus) microplus from Australia. The cytosine to adenine mutation at position 190 in the R. microplus sequence AF134216, results in an amino acid substitution from leucine in the susceptible strain to isoleucine in the resistant strain. A similar mutation has been shown to confer SP resistance in the whitefly, Bemisia tabaci, but has not been described previously in ticks. A diagnostic quantitative PCR assay has been developed using allele-specific Taqman® minor groove-binding (MGB) probes. Using the assay to screen field and laboratory populations of ticks showed that homozygote allelic frequencies correlated highly with the survival percentage at the discriminating concentration of cypermethrin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The lesser grain borer Rhyzopertha dominica (F.) is one of the most destructive insect pests of stored grain. This pest has been controlled successfully by fumigation with phosphine for the last several decades, though strong resistance to phosphine in many countries has raised concern about the long term usefulness of this control method. Previous genetic analysis of strongly resistant (SR) R. dominica from three widely geographically dispersed regions of Australia, Queensland (SRQLD), New South Wales (SRNSW) and South Australia (SRSA), revealed a resistance allele in the rph1 gene in all three strains. The present study confirms that the rph1 gene contributes to resistance in a fourth strongly resistant strain, SR2(QLD), also from Queensland. The previously described rph2 gene, which interacts synergistically with rph1 gene, confers strong resistance on SRQLD and SRNSW. We now provide strong circumstantial evidence that weak alleles of rph2, together with rph1, contribute to the strong resistance phenotypes of SRSA and SR2(QLD). To test the notion that rph1 and rph2 are solely responsible for the strong resistance phenotype of all resistant R. dominica, we created a strain derived by hybridising the four strongly resistant lines. Following repeated selection for survival at extreme rates of phosphine exposure, we found only slightly enhanced resistance. This suggests that a single sequence of genetic changes was responsible for the development of resistance in these insects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In eubacteria, RecA is essential for recombinational DNA repair and for stalled replication forks to resume DNA synthesis. Recent work has implicated a role for RecA in the development of antibiotic resistance in pathogenic bacteria. Consequently, our goal is to identify and characterize small-molecule inhibitors that target RecA both in vitro and in vivo. We employed ATPase, DNA strand exchange and LexA cleavage assays to elucidate the inhibitory effects of suramin on Mycobacterium tuberculosis RecA. To gain insights into the mechanism of suramin action, we directly visualized the structure of RecA nucleoprotein filaments by atomic force microscopy. To determine the specificity of suramin action in vivo, we investigated its effect on the SOS response by pull-down and western blot assays as well as for its antibacterial activity. We show that suramin is a potent inhibitor of DNA strand exchange and ATPase activities of bacterial RecA proteins with IC50 values in the low micromolar range. Additional evidence shows that suramin inhibits RecA-catalysed proteolytic cleavage of the LexA repressor. The mechanism underlying such inhibitory actions of suramin involves its ability to disassemble RecA-single-stranded DNA filaments. Notably, suramin abolished ciprofloxacin-induced recA gene expression and the SOS response and augmented the bactericidal action of ciprofloxacin. Our findings suggest a strategy to chemically disrupt the vital processes controlled by RecA and hence the promise of small molecules for use against drug-susceptible as well as drug-resistant strains of M. tuberculosis for better infection control and the development of new therapies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Estima-se que a prevalência global da população mundial com hepatite C é de 3%. Pouco se sabe sobre a resposta ao tratamento com respeito à resistência viral. Algumas mutações no fragmento de 109 aminoácidos da NS5B são associadas com resistência ao interferon (IFN) e ribavirina (RBV). Estudos moleculares e clínicos identificaram fatores associados com o hospedeiro e vírus relacionados associada com a resposta ao tratamento, tal como o gene que codifica a IL-28B. Este estudo foi dividido em duas fases, cujos objetivos foram caracterizar a frequência de mutações que conferem resistência ao HCV e avaliar a relevância das mutações em pacientes Respondedores (R) ou Não Respondedores (NR) ao tratamento e caracterizar geneticamente as populações sobre polimorfismos genéticos nos SNPs da IL-28B em relação ao prognóstico da resposta ao tratamento. As amostras dos pacientes foram submetidas a testes de genotipagem e carga viral. As sequências geradas foram comparadas no BLAST e no banco de dados Los Alamos HCV. Realizamos o alinhamento das sequências homólogas e as mutações identificadas. Com base no genótipo e carga viral determinamos a classificação dos pacientes de acordo com a resposta à terapia. O DNA genômico foi isolado a partir de sangue periférico para a realização da tipagem de SNPs de IL-28B. A metodologia utilizada foi de PCR em tempo real utilizando sondas TaqMan SNP específico. A análise dos dados foi realizada utilizando GraphPad Prism com qui-quadrado, risco relativo (RR), Odds Ratio (OR) e intervalo de confiança de 95%, com um nível de significância de P <0,05. Foi encontrado na primeira fase deste estudo uma taxa significativa mutações associadas ao tratamento nas amostras estudadas. A prevalência de mutações associadas à resistência ao IFN e RBV bem como a novos medicamentos antivirais localizados no fragmento de 109 aminoácidos da NS5B foi examinado em 69 indivíduos infectados naïve no Rio de Janeiro, Brasil. Na segunda fase, as mutações foram clinicamente relevantes. Desde então, procuramos observar as diferenças entre melhor ou pior prognóstico de acordo com a imunogenética que mostrou diferenciação entre os grupos R e NR ao tratamento em relação ao prognóstico da resposta terapêutica. Quando as diferenças entre as sequências da NS5B e a resposta ao tratamento foram consideradas verificou-se que associada a mutação R254K, estava a C316N que poderia conduzir a uma não resposta à terapia no genótipo 1b. Os nossos dados também suportaram forte associação de IL-28B rs12979860, com elevada probabilidade de resposta à terapia de IFN + RBV. Nossos dados evidenciam a presença de pacientes virgens de tratamento que abrigam mutações de resistência previamente descritas na literatura. A análise dos fatores preditores de resposta virológica mostrou que a predição de boa resposta ou não ao tratamento e ainda da progressão da doença é dependente de uma importante interação entre a genética viral e a do hospedeiro. Fato este importante para que no momento de avaliação de diagnóstico e conduta terapêutica, o médico possa tomar medidas apropriadas para o tratamento de cada paciente individualmente independentemente do genótipo do HCV em questão.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Haemorrhage can be an epidemic and fatal condition in grass carp. It is known now that the Grass Carp Haemorrhage Virus (GCHV) triggers haemorrhage. Human lactoferrin (hLF) plays an important role in the non-specific immune system, making some organisms more resistant to some viruses. Sperm of grass carp was mixed with linearized pCAhLFc, which is a DNA construct containing an hLF cDNA and the promoter of common carp beta-actin gene, and then electroporated. Then, mature eggs were fertilized in vitro with the treated sperm cells. The fry were sampled and analyzed by polymerase chain reaction (PCR). Results indicated that the foreign gene had been transferred successfully into the cells of some fry. Under optimal electroporation conditions, the efficiency of gene transfer was as high as 46.8%. About 35.7% of treated 5-month-old grass carp contained foreign genes. Most transgenic fry demonstrated significant delays in onset of symptoms of haemerrhage after injection of GCHV, suggesting a significant positive relationship between hLF cDNA and levels of disease resistance (P < 0.01). Results suggest that transgenic grass carp could be bred for increased resistance to haemorrhage. (C) 2002 Elsevier Science B.V. All rights reserved.