952 resultados para DROSOPHILA OOGENESIS
Resumo:
EDD (E3 isolated by differential display), located at chromosome 8q22.3, is the human orthologue of the Drosophila melanogaster tumour suppressor gene 'hyperplastic discs' and encodes a HECT domain E3 ubiquitin protein-ligase. To investigate the possible involvement of EDD in human cancer, several cancers from diverse tissue sites were analysed for allelic gain or loss (allelic imbalance, AI) at the EDD locus using an EDD-specific microsatellite, CEDD, and other polymorphic microsatellites mapped in the vicinity of the 8q22.3 locus. Of 143 cancers studied, 38 had AI at CEDD (42% of 90 informative cases). In 14 of these cases, discrete regions of imbalance encompassing 8q22.3 were present, while the remainder had more extensive 8q aberrations. AI of CEDD was most frequent in ovarian cancer (22/47 informative cases, 47%), particularly in the serous subtype (16/22, 73%), but was rare in benign and borderline ovarian tumours. AI was also common in breast cancer (31%), hepatocellular carcinoma (46%), squamous cell carcinoma of the tongue (50%) and metastatic melanoma (18%). AI is likely to represent amplification of the EDD gene locus rather than loss of heterozygosity, as quantitative RT-PCR and immunohistochemistry showed that EDD mRNA and protein are frequently overexpressed in breast and ovarian cancers, while among breast cancer cell lines EDD overexpression and increased gene copy number were correlated. These results demonstrate that AI at the EDD locus is common in a diversity of carcinomas and that the EDD gene is frequently overexpressed in breast and ovarian cancer, implying a potential role in cancer progression.
Resumo:
Two members of the low density lipoprotein receptor (LDLR) family were identified as putative orthologs for a vitellogenin receptor (Amvgr) and a lipophorin receptor (Amlpr) in the Apis mellifera genome. Both receptor sequences have the structural motifs characteristic of LDLR family members and show a high degree of similarity with sequences of other insects. RT-PCR analysis of Amvgr and Amlpr expression detected the presence of both transcripts in different tissues of adult female (ovary, fat body, midgut, head and specifically hypopharyngeal gland), as well as in embryos. In the head RNA samples we found two variant forms of AmLpR: a full length one and a shorter one lacking 29 amino acids in the O-linked sugar domain. In ovaries the expression levels of the two honey bee LDLR members showed opposing trends: whereas Amvgr expression was upregulated as the ovaries became activated, Amlpr transcript levels gradually declined. In situ hybridization analysis performed on ovaries detected Amvgr mRNA exclusively in germ line cells and corroborated the qPCR results showing an increase in Amvgr gene expression concomitant with follicle growth. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Ecdysteroids regulate many aspects of insect physiology after binding to a heterodimer composed of the nuclear hormone receptor proteins ecdysone receptor (EcR) and ultraspiracle (Use). Several lines of evidence have suggested that the latter also plays important roles in mediating the action of juvenile hormone (JH) and, thus, integrates signaling by the two morphogenetic hormones. By using an RNAi approach, we show here that Us p participates in the mechanism that regulates the progression of pupal development in Apis mellifera, as indicated by the observed pupal developmental delay in usp knocked-down bees. Knock-down experiments also suggest that the expression of regulatory genes such as ftz transcription factor 1 (ftz-f1) and juvenile hormone esterase (jhe) depend on Usp. Vitellogenin (vg), the gene coding the main yolk protein in honeybees, does not seem to be under Usp regulation, thus suggesting that the previously observed induction of vg expression by JH during the last stages of pupal development is mediated by yet unknown transcription factor complexes. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Tight control over circulating juvenile hormone (JH) levels is of prime importance in an insect`s life cycle. Consequently, enzymes involved in JH metabolism, especially juvenile hormone esterases (JHEs), play major roles during metamorphosis and reproduction. In the highly eusocial Hymenoptera, JH has been co-opted into additional functions, primarily in the development of the queen and worker castes and in age-related behavioral development of workers. Within a set of 21 carboxylesterases predicted in the honey bee genome we identified one gene (Amjhe-like) that contained the main functional motifs of insect JHEs. Its transcript levels during larval development showed a maximum at the switch from feeding to spinning behavior, coinciding with a JH titer minimum. In adult workers, the highest levels were observed in nurse bees, where a low JH titer is required to prevent the switch to foraging. Functional assays showed that Amjhe-like expression is induced by JH-III and suppressed by 20-hydroxyecdysone. RNAi-mediated silencing of Amjhe-like gene function resulted in a six-fold increase in the JH titer in adult worker bees. The temporal profile of Amjhe-like expression in larval and adult workers, the pattern of hormonal regulation and the knockdown phenotype are consistent with the function of this gene as an authentic JHE. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.
Resumo:
Proteins stored in insect hemolymph may serve (is a source of amino acids and energy for metabolism, and development. The expression of the main storage proteins was assessed in bacterial-challenged honey bees using real-time (RT)-PCH and Western blot.. After ensuring that. the immune system had, been activated by measuring the ensuing expression (, the innate immune response genes, defensin-1 (def-1) and prophenoloxidase (pro PO), we verified the expression of four genes encoding storage proteins. The levels of vitellogenin (vg) mRNA and of the respective protein. were significantly lowered in bees injected with bacteria or water only (injury). An equivalent response was observed in orally-infected bees. The levels of apolipophorin II/I (apoLP-II/I) and hexamerin (hex 70a) mRNAs did not significantly change, but levels of Hex 70a protein subunit showed a substantial decay after bacterial challenge or injury. Infection also caused a strong reduction in the levels of apoLP-III transcripts. Our findings are consistent with a down-regulation, of the express and accumulation of storage proteins as a consequence of activation of the immune system, suggesting that this phenomenon. represents a strategy to redirect resources to combat injury or infection. (C) 2009 Wiley Periodicals, Inc.
Resumo:
Human sulfotransferase SULT1A1 is an important phase II xenobiotic metabolizing enzyme that is highly expressed in the liver and mediates the sulfonation of drugs, carcinogens, and steroids. Until this study, the transcriptional regulation of the SULT1A subfamily had been largely unexplored. Preliminary experiments in primary human hepatocytes showed that SULT1A mRNA levels were not changed in response to nuclear receptor activators, such as dexamethasone and 3-methylcolanthrene, unlike other metabolizing enzymes. Using HepG2 cells, the high activity of the TATA-less SULT1A1 promoter was shown to be dependent on the presence of Sp1 and Ets transcription factor binding sites (EBS), located within - 112 nucleotides from the transcriptional start site. The homologous promoter of the closely related SULT1A3 catecholamine sulfotransferase, which is expressed at negligible levels in the adult liver, displayed 70% less activity than SULT1A1. This was shown to be caused by a two-base pair difference in the EBS. The Ets transcription factor GA binding protein (GABP) was shown to bind the SULT1A1 EBS and could transactivate the SULT1A1 promoter in Drosophila melanogaster S2 cells. Cotransfection of Sp1 could synergistically enhance GABP-mediated activation by 10-fold. Although Sp1 and GABP alone could induce SULT1A3 promoter activity, the lack of the EBS on this promoter prevented a synergistic interaction between the two factors. This study reports the first insight into the transcriptional regulation of the SULT1A1 gene and identifies a crucial difference in regulation of the closely related SULT1A3 gene, which accounts for the two enzymes' differential expression patterns observed in the adult liver.
Resumo:
Numerous studies have reported that females benefit from mating with multiple males (polyandry) by minimizing the probability of fertilization by genetically incompatible sperm. Few, however, have directly attributed variation in female reproductive success to the fertilizing capacity of sperm. In this study we report on two experiments that investigated the benefits of polyandry and the interacting effects of males and females at fertilization in the free-spawning Australian sea urchin Heliocidaris erythrogramma. In the first experiment we used a paired (split clutch) experimental design and compared fertilization rates within female egg clutches under polyandry (eggs exposed to the sperm from two males simultaneously) and monandry (eggs from the same female exposed to sperm from each of the same two males separately). Our analysis revealed a significant fertilization benefit of polyandry and strong interacting effects of males and females at fertilization. Further analysis of these data strongly suggested that the higher rates of fertilization in the polyandry treatment were due to an overrepresentation of fertilizations due to the most compatible male. To further explore the interacting effects of males and females at fertilization we performed a second factorial experiment in which four mates were crossed with two females (in all eight combinations). In addition to confirming that fertilization success is influenced by male X female interactions, this latter experiment revealed that both sexes contributed significant variance to the observed patterns of fertilization. Taken together, these findings highlight the importance of male X female interactions at fertilization and suggest that polyandry will enable females to reduce the cost of fertilization by incompatible gametes.
Resumo:
Drosophila Fallen, 1823 (Diptera, Drosophilidae) is for long a well-established model organism for genetics and evolutionary research. The ecology of these flies, however, has only recently been better studied. Recent papers show that Drosophila assemblies can be used as bioindicators of forested environment degradation. In this work the bioindicator potential of drosophilids was evaluated in a naturally opened environment, a coastal strand-forest (restinga). Data from nine consecutive seasonal collections revealed strong temporal fluctuation pattern of the majority of Drosophila species groups. Drosophila willistoni group was more abundant at autumns, whereas D. cardini and D. tripunctata groups were, respectively, expressive at winters and springs, and D. repleta group at both seasons. The exotic species D. simulans Sturtevant, 1919 (from D. melanogaster group) and Zaprionus indianus Gupta, 1970 were most abundant at summers. Overall, the assemblage structure did not show the same characteristics of forested or urban environments, but was similar to the forests at winters and to cities at summers. This raises the question that this locality may already been under urbanization impact. Also, this can be interpreted as an easily invaded site for exotic species, what might lead to biotic homogenization and therefore can put in check the usage of drosophilid assemblages as bioindicators at open environments.
Resumo:
The spatial and temporal association of muscle-specific tropomyosin gene expression, and myofibril assembly and degradation during metamorphosis is analyzed in the gastropod mollusc. Haliotis rufescens. Metamorphosis of tile planktonic larva to the benthic juvenile includes rearrangement and atrophy of specific larval muscles, and biogenesis of the new juvenile muscle system. The major muscle of the larva - the larval retractor muscle - reorganizes at metamorphosis, with two suites of cells having different fates. The ventral cells degenerate, while the dorsal cells become part of the developing juvenile mantle musculature. Prior to these changes in myofibrillar structure, tropomyosin mRNA prevalence declines until undetectable in the ventral cells, while increasing markedly in the dorsal cells. In the foot muscle and right shell muscle, tropomyosin mRNA levels remain relatively stable, even trough myofibril content increases. In a population of median mesoderm cells destined to form de novo the major muscle of the juvenile and adult (the columellar muscle), tropomyosin expression is initiated at 45 h after induction of metamorphosis. Myofibrillar filamentous actin is not detected in these cells until about 7 days later. Given that patterns of tropomyosin mRNA accumulation in relation to myofibril assembly and disassembly differ significantly among the four major muscle systems examined, we suggest that different regulatory mechanisms, probably operating at both transcriptional and post-transcriptional levels, control the biogenesis and atrophy of different larval and postlarval muscles at metamorphosis.
Resumo:
We have isolated a homeobox-containing cDNA from the gastropod mollusc Haliotis rufescens that is most similar to members of the Mox homeobox gene class, The derived Haliotis homeodomain sequence is 85% identical to mouse and frog Mox-2 homeodomains and 88.9% identical to the partial cnidarian cnox5-Hm homeodomain. Quantitative reverse transcription-polymerase chain reaction analysis of mRNA accumulation reveals that this gene, called HruMox, is expressed in the larva, but not in the early embryo, Transcripts are most prevalent during larval morphogenesis from trochophore to veliger. There are also transient increases in transcript prevalence 1 and 3 days after the intitiation of metamorphosis from veliger to juvenile. The identification of a molluscan Mox homeobox gene that is more closely related to vertebrate genes than other protostome (e.g. Drosophila) genes suggests the Mox class of homeobox genes may consist of several different families that have been conserved through evolution, (C) 1997 Federation of European Biochemical Societies.
Resumo:
The molecular mechanism by which polydnaviruses of endoparasitoid wasps disrupt cell-mediated encapsulation reactions of host insects is largely unknown. Here we show that a polydnavirus-encoded protein, produced from baculovirus and plasmid expression vectors, prevents cell surface exposure of lectin-binding sites and microparticle formation during immune stimulation of haemocytes. The inactivation of immune-related cellular processes by this protein was analysed using a specific lectin and annexin V and shown to be virtually identical to polydnavirus-mediated effects on haemocytes. Cytochalasin D application has similar effects on haemocytes, suggesting that the immune suppression by the polydnavirus protein is caused by the destabilization of actin filaments. Since the exposure of cell surface glycoproteins and the formation of microparticles are part of an immune response to foreign objects or microorganisms and a prerequisite for cell-mediated encapsulation of microorganisms and parasites, the virus-encoded protein may become an important tool for the inactivation of cellular immune reactions in insects and an essential component in understanding immune suppression in parasitized host insects.
Resumo:
Although many mathematical models exist predicting the dynamics of transposable elements (TEs), there is a lack of available empirical data to validate these models and inherent assumptions. Genomes can provide a snapshot of several TE families in a single organism, and these could have their demographics inferred by coalescent analysis, allowing for the testing of theories on TE amplification dynamics. Using the available genomes of the mosquitoes Aedes aegypti and Anopheles gambiae, we indicate that such an approach is feasible. Our analysis follows four steps: (1) mining the two mosquito genomes currently available in search of TE families; (2) fitting, to selected families found in (1), a phylogeny tree under the general time-reversible (GTR) nucleotide substitution model with an uncorrelated lognormal (UCLN) relaxed clock and a nonparametric demographic model; (3) fitting a nonparametric coalescent model to the tree generated in (2); and (4) fitting parametric models motivated by ecological theories to the curve generated in (3).
Resumo:
Oligodendrogliomas are the second most common malignant brain tumor in adults and exhibit characteristic losses of chromosomes 1p and 19q. To identify the molecular genetic basis for this alteration, we performed exomic sequencing of seven tumors. Among other changes, we found that the CIC gene (homolog of the Drosophila gene capicua) on chromosome 19q was somatically mutated in six cases and that the FUBP1 gene [encoding far-upstream element (FUSE) binding protein] on chromosome 1p was somatically mutated in two tumors. Examination of 27 additional oligodendrogliomas revealed 12 and 3 more tumors with mutations of CIC and FUBP1, respectively, 58% of which were predicted to result in truncations of the encoded proteins. These results suggest a critical role for these genes in the biology and pathology of oligodendrocytes.
Resumo:
Medulloblastomas are the most common malignant tumors of the central nervous system in childhood. The incidence is about 19-20% between children younger than 16 years old with peak incidence between 4 and 7 years. Despite its sensibility to no specific therapeutic means like chemotherapy and radiotherapy, the treatment is very aggressive and frequently results in regression, growth deficit, and endocrine dysfunction. From this point of view, new treatment approaches are needed such as molecular targeted therapies. Studies in glioblastoma demonstrated that ASPM gene was overexpressed when compared to normal brain and ASPM inhibition by siRNA-mediated inhibits tumor cell proliferation and neural stem cell proliferation, supporting ASPM gene as a potential molecular target in glioblastoma. The aim of this work was to evaluate ASPM expression in medulloblastoma fragment samples, and to compare the results with the patient clinical features. Analysis of gene expression was performed by quantitative PCR real time using SYBR Green system in tumor samples from 37 children. The t test was used to analyze the gene expression, and Mann-Whitney test was performed to analyze the relationship between gene expressions and clinical characteristics. Kaplan-Meier test evaluated curve survival. All samples overexpressed ASPM gene more than 40-fold. However, we did not find any association between the overexpressed samples and the clinical parameters. ASPM overexpression may modify the ability of stem cells to differentiate during the development of the central nervous system, contributing to the development of medulloblastoma, a tumor of embryonic origin from cerebellar progenitor cells.