905 resultados para DNA-organic hybrid materials, polymer colloidsm
Resumo:
Biomaterials are often soft materials. There is now growing interest in designing, synthesizing and characterising soft materials that mimic the properties of biological materials such as tissue, proteins, DNA or cells. Research on biomimetic soft matter is therefore a developing theme with important emerging applications in biomedicine including tissue engineering, diagnostics, gene therapy, drug delivery and many others. There are also important basic science questions concerning the use of concepts from colloid and polymer science to understand the self-assembly of biomimetic soft materials. This issue of Soft Matter presents a selection of extremely topical articles on a diversity of biomimetic soft matter systems. I thank the contributors for this quite remarkable collection of papers, which report many fascinating discoveries and insights.
Resumo:
The DNA G-qadruplexes are one of the targets being actively explored for anti-cancer therapy by inhibiting them through small molecules. This computational study was conducted to predict the binding strengths and orientations of a set of novel dimethyl-amino-ethyl-acridine (DACA) analogues that are designed and synthesized in our laboratory, but did not diffract in Synchrotron light.Thecrystal structure of DNA G-Quadruplex(TGGGGT)4(PDB: 1O0K) was used as target for their binding properties in our studies.We used both the force field (FF) and QM/MM derived atomic charge schemes simultaneously for comparing the predictions of drug binding modes and their energetics. This study evaluates the comparative performance of fixed point charge based Glide XP docking and the quantum polarized ligand docking schemes. These results will provide insights on the effects of including or ignoring the drug-receptor interfacial polarization events in molecular docking simulations, which in turn, will aid the rational selection of computational methods at different levels of theory in future drug design programs. Plenty of molecular modelling tools and methods currently exist for modelling drug-receptor or protein-protein, or DNA-protein interactionssat different levels of complexities.Yet, the capasity of such tools to describevarious physico-chemical propertiesmore accuratelyis the next step ahead in currentresearch.Especially, the usage of most accurate methods in quantum mechanics(QM) is severely restricted by theirtedious nature. Though the usage of massively parallel super computing environments resulted in a tremendous improvement in molecular mechanics (MM) calculations like molecular dynamics,they are still capable of dealing with only a couple of tens to hundreds of atoms for QM methods. One such efficient strategy that utilizes thepowers of both MM and QM are the QM/MM hybrid methods. Lately, attempts have been directed towards the goal of deploying several different QM methods for betterment of force field based simulations, but with practical restrictions in place. One of such methods utilizes the inclusion of charge polarization events at the drug-receptor interface, that is not explicitly present in the MM FF.
Resumo:
A method has been established for observing the internal structure of the network component of polymer-stabilised liquid crystals. In situ photopolymerisation of a mesogenic diacrylate monomer using ultraviolet light leads to a sparse network (∼1 wt%) within a nematic host. Following polymerisation, the host was removed through dissolution in heptane, revealing the network. In order to observe a cross-section through the network, it was embedded in a resin and then sectioned using an ultramicrotome. However, imaging of the network was not possible due to poor contrast. To improve this, several reagents were used for network staining, but only one was successful: bromine. The use of a Melinex-resin composite for sectioning was also found to be advantageous. Imaging of the network using transmission electron microscopy revealed solid “droplets” of width 0.07–0.20 μm, possessing an open, yet homogeneous structure, with no evidence for any large-scale internal structures.
Resumo:
A novel but simple time-of-flight neutron scattering geometry which allows structural anisotropy to be probed directly, simultaneously and thus unambiguously in polymeric and other materials is described. A particular advantage of the simultaneous data collection when coupled to the large area of the beam is that it enables thin films (< 10 μm < 10 mg) to be studied with relative ease. The utility of the technique is illustrated by studies on both deformed poly(styrene) glasses and on thin films of electrical conducting polymers. In the latter case, the power of isotopic substitution is illustrated to great effect. The development of these procedures for use in other areas of materials science is briefly discussed.
Resumo:
A new approach to the study of the local organization in amorphous polymer materials is presented. The method couples neutron diffraction experiments that explore the structure on the spatial scale 1–20 Å with the reverse Monte Carlo fitting procedure to predict structures that accurately represent the experimental scattering results over the whole momentum transfer range explored. Molecular mechanics and molecular dynamics techniques are also used to produce atomistic models independently from any experimental input, thereby providing a test of the viability of the reverse Monte Carlo method in generating realistic models for amorphous polymeric systems. An analysis of the obtained models in terms of single chain properties and of orientational correlations between chain segments is presented. We show the viability of the method with data from molten polyethylene. The analysis derives a model with average C-C and C-H bond lengths of 1.55 Å and 1.1 Å respectively, average backbone valence angle of 112, a torsional angle distribution characterized by a fraction of trans conformers of 0.67 and, finally, a weak interchain orientational correlation at around 4 Å.
Resumo:
We present a new approach that allows the determination of force-field parameters for the description of disordered macromolecular systems from experimental neutron diffraction data obtained over a large Q range. The procedure is based on a tight coupling between experimentally derived structure factors and computer modelling. We separate the molecular potential into non-interacting terms representing respectively bond stretching, angle bending and torsional rotation. The parameters for each of the potentials are extracted directly from experimental data through comparison of the experimental structure factor and those derived from atomistic level molecular models. The viability of these force fields is assessed by comparison of predicted large-scale features such as the characteristic ratio. The procedure is illustrated on molten poly(ethylene) and poly(tetrafluoroethylene).
Resumo:
3′-S-Phosphorothiolate (3′-SP) linkages have been incorporated into the DNA strand of both a DNA·RNA duplex and a DNA·DNA duplex. Thermal melting (Tm) studies established that this modification significantly stabilises the DNA·RNA duplex with an average increase in Tm of about 1.4 °C per modification. For two or three modifications, the increase in Tm was larger for an alternating, as compared to the contiguous, arrangement. For more than three modifications their arrangement had no effect on Tm. In contrast to the DNA·RNA duplex, the 3′-S-phosphorothiolate linkage destabilised the DNA·DNA duplex, irrespective of the arrangement of the 3′-SP linkages. The effect of ionic strength on duplex stability was similar for both the phosphorothiolate-substituted and the unmodified RNA·DNA duplexes. The results are discussed in terms of the influence that the sulfur atom has on the conformation of the furanose ring and comparisons are also drawn between the current study and those previously conducted with other modifications that have a similar conformational effect.
Resumo:
Mitochondria and Wolbachia are maternally inherited genomes that exhibit strong linkage disequilibrium in many organisms. We surveyed Wolbachia infections in 187 specimens of the fig wasp species, Ceratosolen solmsi, and found an infection prevalence of 89.3%. DNA sequencing of 20 individuals each from Wolbachia-infected and -uninfected subpopulations revealed extreme mtDNA divergence (up to 9.2% and 15.3% in CO1 and cytochrome b, respectively) between infected and uninfected wasps. Further, mtDNA diversity was significantly reduced within the infected group. Our sequencing of a large part of the mitochondrial genome from both Wolbachia-infected and -uninfected individuals revealed that high sequence divergence is common throughout the mitochondrial genome. These patterns suggest a partial selective sweep of mitochondria subsequent to the introduction of Wolbachia into C. solsmi, by hybrid introgression from a related species.
Resumo:
If acid-sensitive drugs or cells are administered orally, there is often a reduction in efficacy associated with gastric passage. Formulation into a polymer matrix is a potential method to improve their stability. The visualization of pH within these materials may help better understand the action of these polymer systems and allow comparison of different formulations. We herein describe the development of a novel confocal laser-scanning microscopy (CLSM) method for visualizing pH changes within polymer matrices and demonstrate its applicability to an enteric formulation based on chitosan-coated alginate gels. The system in question is first shown to protect an acid-sensitive bacterial strain to low pH, before being studied by our technique. Prior to this study, it has been claimed that protection by these materials is a result of buffering, but this has not been demonstrated. The visualization of pH within these matrices during exposure to a pH 2.0 simulated gastric solution showed an encroachment of acid from the periphery of the capsule, and a persistence of pHs above 2.0 within the matrix. This implies that the protective effect of the alginate-chitosan matrices is most likely due to a combination of buffering of acid as it enters the polymer matrix and the slowing of acid penetration.
Resumo:
One of the key processes that drives rhizosphere microbial activity is the exudation of soluble organic carbon (C) by plant roots. We describe an experiment designed to determine the impact of defoliation on the partitioning and movement of C in grass (Lolium perenne L.), soil and grass-sterile sand microcosms, using a (13)CO(2) pulse-labelling method. The pulse-derived (13)C in the shoots declined over time, but that of the roots remained stable throughout the experiment. There were peaks in the atom% (13)C of rhizosphere CO(2) in the first few hours after labelling probably due to root respiration, and again at around 100 h. The second peak was only seen in the soil microcosms and not in those with sterilised sand as the growth medium, indicating possible microbial activity. Incorporation of the (13)C label into the microbial biomass increased at 100 h when incorporation into replicating cells, as indicated by the amounts of the label in the microbial DNA, started to increase. These results indicate that the rhizosphere environment is conducive to bacterial growth and replication. The results also show that defoliation had no impact on the pattern of movement of (13)C from plant roots into the microbial population in the rhizosphere.
Resumo:
Polymers are used in many everyday technologies and their degradation due to environmental exposure has lead to great interest in materials which can heal and repair themselves. In order to design new self healing polymers it's important to understand the fundamental healing mechanisms behind the material.Healable Polymer Systems will outline the key concepts and mechanisms underpinning the design and processing of healable polymers, and indicate potential directions for progress in the future development and applications of these fascinating and potentially valuable materials. The book covers the different techniques developed successfully to date for both autonomous healable materials (those which do not require an external stimulus to promote healing) and rehealable or remendable materials (those which only recover their original physical properties if a specific stimulus is applied). These include the encapsulated-monomer approach, reversible covalent bond formation, irreversible covalent bond formation and supramolecular self-assembly providing detailed insights into their chemistry.Written by leading experts, the book provides polymer scientists with a compact and readily accessible source of reference for healable polymer systems.
Resumo:
This chapter details the design, synthesis and evaluation techniques required to produce healable supramolecular materials. Key developments in supramolecular polymer chemistry that laid down the design concepts necessary to produce responsive materials are summarized. Subsequently, select examples from the literature concerning the synthesis and analysis of healable materials containing hydrogen bonding, π−π stacking and metal–ligand interactions are evaluated. The last section describes the most recent efforts to produce healable gels for niche applications, including electrolytes and tissue engineering scaffolds. The chapter also describes the design criteria and production of nano-composite materials that exhibit dramatically increased strength compared to previous generations of supramolecular materials, whilst still retaining the key healing characteristics.
Resumo:
Electrospinning was used to generate polymer nanofibres from blends of poly-vinyl cinnamate (PVCN) and a cholesteric silicone polymer. Only blends that contained at least 40 % of PVCN produced fibres. Both differential scanning calorimetry and electron dispersion spectroscopy data indicate that the samples are miscible over a wide temperature interval. The variation of fibre diameter with concentration is nonlinear with a well-defined minimum corresponding to an 80 % PVCN blend. The fibres are birefringent with Kerr constants similar to that of cholesteric liquid crystals. Although not significant, the Kerr constant increases with increasing silicone polymer concentration.
Gallium-sulphide supertetrahedral clusters as building blocks of covalent organic-inorganic networks
Resumo:
The synthesis and characterisation of novel covalent organic-inorganic architectures containing organically-functionalised supertetrahedra is described. The structures of these unique materials consist of one-dimensional zigzag chains or of honeycomb-type layers, in which gallium-sulfide supertetrahedral clusters and dipyridyl ligands alternate.