921 resultados para DIASTOLIC DYSFUNCTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Hyperglycaemia (HG), in stroke patients, is associated with worse neurological outcome by compromising endothelial cell function and the blood–brain barrier (BBB) integrity. We have studied the contribution of HG-mediated generation of oxidative stress to these pathologies and examined whether antioxidants as well as normalization of glucose levels following hyperglycaemic insult reverse these phenomena. Methods: Human brain microvascular endothelial cell (HBMEC) and human astrocyte co-cultures were used to simulate the human BBB. The integrity of the BBB was measured by transendothelial electrical resistance using STX electrodes and an EVOM resistance meter, while enzyme activities were measured by specific spectrophotometric assays. Results: After 5 days of hyperglycaemic insult, there was a significant increase in BBB permeability that was reversed by glucose normalization. Co-treatment of cells with HG and a number of antioxidants including vitamin C, free radical scavengers and antioxidant enzymes including catalase and superoxide dismutase mimetics attenuated the detrimental effects of HG. Inhibition of p38 mitogen-activated protein kinase (p38MAPK) and protein kinase C but not phosphoinositide 3 kinase (PI3 kinase) also reversed HG-induced BBB hyperpermeability. In HBMEC, HG enhanced pro-oxidant (NAD(P)H oxidase) enzyme activity and expression that were normalized by reverting to normoglycaemia. Conclusions: HG impairs brain microvascular endothelial function through involvements of oxidative stress and several signal transduction pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Friedreich ataxia (FRDA) is a progressive inherited neurodegenerative disorder caused by mutation of the FXN gene, resulting in decreased frataxin expression, mitochondrial dysfunction and oxidative stress. A recent study has identified shorter telomeres in FRDA patient leukocytes as a possible disease biomarker. Results: Here we aimed to investigate both telomere structure and function in FRDA cells. Our results confirmed telomere shortening in FRDA patient leukocytes and identified similar telomere shortening in FRDA patient autopsy cerebellar tissues. However, FRDA fibroblasts showed significantly longer telomeres at early passage, occurring in the absence of telomerase activity, but with activation of an alternative lengthening of telomeres (ALT)-like mechanism. These cells also showed accelerated telomere shortening as population doubling increases. Furthermore, telomere dysfunction-induced foci (TIF) analysis revealed that FRDA fibroblasts have dysfunctional telomeres. Conclusions: Our finding of dysfunctional telomeres in FRDA cells provides further insight into FRDA molecular disease mechanisms, which may have implications for future FRDA therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: It is widely accepted that obesity is associated with endothelial dysfunction. In a recent paper, we have also found circuit resistance training may reduce visceral fat in obese aged women. Accordingly, the current study was conducted to ascertain the effects of circuit resistance training on markers of endothelial dysfunction in this population group. Methods: In the present interventional study, a total of 48 obese aged women were recruited from the community. Twenty-four of them were randomly assigned to perform a 12-week resistance circuit training programme, 3-days per week. This training was circularly performed in 6 stations: arm curl, leg extension, seated row, leg curl, triceps extension and leg press. The Jamar handgrip electronic dynamometer was used to assess maximal handgrip strength of the dominant hand. Lastly, serum samples were analysed using an immunoassay (ELISA) for endothelin-1, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Results: When compared to baseline, resistance training significantly reduced serum levels of endothelin-1 (2.28 ± 0.7 vs. 1.98 ± 1.1 pg/ml; p = 0.019; d = 0.67) and ICAM-1 (290 ± 69 vs. 255 ± 76 ng/ml; p = 0.004; d = 0.92) in the experimental group. No significant changes in any of the tested outcomes were found in the control group. Conclusion: A short-term circuit resistance program improved endothelial dysfunction in aged obese women. Further studies on this topic are still required to consolidate this approach in clinical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Procalcitonin (PCT) kinetics is a good prognosis marker in infectious diseases, but few studies of children sepsis have been performed. Objectives: The aim of our study was to examine kinetics of procalcitonin, to evaluate its relationship with severity and to analyze its usefulness in the prediction of multiorgan dysfunction syndrome (MODS). Patients and Methods: Prospective observational study in an 8-bed pediatric intensive care unit of a university hospital. Sixty-two children aged 0-19 years with systemic inflammatory response syndrome or septic states. The degree of severity was evaluated according pediatric logistic organ dysfunction (PELOD) score. Blood tests to determine levels of PCT were taken if the patients had the criteria of systemic inflammatory response syndrome or sepsis. The serum to determine levels of PCT in control group has been taken from patients undergoing elective surgery. Results: Higher values of PCT were identified in patients with PELOD score 12 and more compared to those with PELOD < 12 (P = 0.016). Similarly, higher PCT values were found in patients who developed MODS in contrast to those without MODS (P = 0.011). According to ROC analysis cut-off value of 4.05 ng/mL was found to best discriminate patients with PELOD < 12 and PELOD ≥ 12 with AUC = 0.675 (P = 0.035). Effect of procalcitonin levels on mortality was not demonstrated. Conclusions: Levels of procalcitonin from day 1 to day 5 are related to the severity and multiorgan dysfunction syndrome in children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To establish the prevalence of olfactory dysfunction in smoking and non-smoking students of our Faculty who attend the Department of Otolaryngology (ENT) of our Hospital. Materials and method: Students (smokers and non-smokers) that do and do not suffer from olfactory dysfunction. We applied a questionnaire and a pocket smell test for screening all of the students. Results: We evaluated 207 students, between 18 and 30 years old; 50.7% (n=105) were women and 49.3% (n=102) were men. The smokers among them smoked up to 6 packs per year. One hundred twenty three students were non-smokers and 84 students were smokers. Of the 84 students who were smokers, 67 (79.7%) answered the Pocket Smell Test correctly (3/3) and 17 (20.2%) students had one or more errors. We had 123 non-smoker students and 103 (83.7%) students answered the Pocket Smell Test correctly and 20 (16.2%) answered with one or more errors. The prevalence of olfactory dysfunction in young smokers with a 95% conidence interval would be 32.8%. Conclusions: This study informed us about olfactory dysfunctions in our student population and their smoking habits. We corroborate that the Pocket Smell Test is reliable with the questionnaire; nevertheless it is a screening test. We have a population of young people who smoke one cigarette per day and who didn’t have a signiicant alteration in their ability of smell at the time of the study. This is consistent with medical literature. More studies should be conducted in order to expand this information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Introduction: The increasing survivor population of breast cancer has shifted research and practice interests into the impacts of the disease and treatment in quality of life aspects. The lack of tools available in Portuguese to objectively evaluate sexual function led to the development of this study, which aimed to cross-culturally adapt and validate the Sexual Activity Questionnaire for use in Portugal. Material and Methods: The questionnaire was translated and back-translated, refined following face-to-face interviews with seven breast cancer survivors, and then self-administered by a larger sample at baseline and a fortnight later to test validity and reliability. Results: Following cognitive debriefing (n = 7), minor changes were made and the Sexual Activity Questionnaire was then tested with 134 breast cancer survivors. A 3-factor structure explained 75.5% of the variance, comprising the Pleasure, Habit and Discomfort scales, all yielding good internal consistency (Cronbach’s α > 0.70). Concurrent validity with the FACt-An and the BCPT checklist was good (Spearman’s r > 0.65; p-value < 0.001) and reliability acceptable (Cohen’s k > 0.444). The Sexual Activity Questionnaire allowed the identification of 23.9% of sexually inactive women, for whom the main reasons were lack of interest or motivation and not having a partner. Discussion: Patient-reported outcomes led to a more comprehensive and improved approach to cancer, tackling areas previously abandoned. Future research should focus on the validation of this scale in samples with different characteristics and even in the overall population to enable generalizability of the findings. Conclusion: The adapted Sexual Activity Questionnaire is a valid tool for assessing sexual function in breast cancer survivors in Portugal."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Evaluation of myocardial function by speckle-tracking echocardiography is a new method for the early diagnosis of systolic dysfunction. Objectives: We aimed to determine myocardial speckle-tracking echocardiography indices in Kawasaki Disease (KD) patients and compare them with the same indices in control subjects. Patients and Methods: Thirty-two patients (65.5% males) with KD and 19 control subjects with normal echocardiography participated in this study. After their demographic characteristics and clinical findings were recorded, all the participants underwent transthoracic echocardiography. Strain (S), Strain Rate (SR), Time to Peak Strain (TPS), and Strain Rate (TPSR), longitudinal velocity and view point velocity images in the two, three, and four-chamber views were semi-automatically obtained via speckle-tracking echocardiography. Results: Among the patients, Twenty-four cases (75%) were younger than 4 years. Mean global S and SR was significantly reduced in the KD patients compared to controls (17.03 ± 1.28 vs. 20.22 ± 2.14% and 1.66 ± 0.16 vs. 1.97 ± 0.25 1/second, respectively), while there were no significant differences regarding mean TPS, TPSR, longitudinal velocity and view point velocity. Using repeated measure of analysis of variances, we observed that S and SR decreased from base to apical level in both groups. The change in the pattern of age adjusted mean S and SR across levels was significantly different between the groups (P < 0.001 for both parameters). Conclusions: We showed changes in S and SR assessed in KD patients versus control subjects in the acute phase of KD. However, we suggest that further studies be undertaken to compare S and SR in the acute phase and thereafter in KD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To explore the literature regarding prevalance, risk factors and the involvement of antihypertensive drugs in erectile dysfunction (ED). Methods: Original research articles, reviews, editorials and case reports published in English language on the prevalence of sexual/erectile dysfunction in hypertensive men taking antihypertensive drugs and risk factors were identified through a search of four bibliographic databases, namely, PubMed, EMBASE, CINAHL and EBSCO Health. Results: Recent analyses suggest that hypertensive men of almost all age groups suffer from ED but it is more prevalent in elderly male patients. The involvement of β-blockers was found to be controversial. Nevertheless, some evidence had been found regarding the use of propranolol in high doses. Conclusion: The present review indicates the need for research to unravel the role of β-blockers in the manifestation of ED in hypertensive males, whom there are no contributory factors such as sedentary lifestyle, aging, stress and anxiety, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial dysfunction in T2D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bipolar disorder (BD) is a chronic psychiatric illness characterized by severe and biphasic changes in mood. Several pathophysiological mechanisms have been hypothesized to underpin the neurobiology of BD, including the presence of mitochondrial dysfunction. A confluence of evidence points to an underlying dysfunction of mitochondria, including decreases in mitochondrial respiration, high-energy phosphates and pH; changes in mitochondrial morphology; increases in mitochondrial DNA polymorphisms; and downregulation of nuclear mRNA molecules and proteins involved in mitochondrial respiration. Mitochondria play a pivotal role in neuronal cell survival or death as regulators of both energy metabolism and cell survival and death pathways. Thus, in this review, we discuss the genetic and physiological components of mitochondria and the evidence for mitochondrial abnormalities in BD. The final part of this review discusses mitochondria as a potential target of therapeutic interventions in BD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamatergic dysfunction has been implicated in the pathogenesis of depressive disorders and Huntington's disease (HD), in which depression is the most common psychiatric symptom. Synaptic glutamate homeostasis is regulated by cystine-dependent glutamate transporters, including GLT-1 and system xc (-) In HD, the enzyme regulating cysteine (and subsequently cystine) production, cystathionine-γ-lygase, has recently been shown to be lowered. The aim of the present study was to establish whether cysteine supplementation, using N-acetylcysteine (NAC) could ameliorate glutamate pathology through the cystine-dependent transporters, system xc (-) and GLT-1. We demonstrate that the R6/1 transgenic mouse model of HD has lower basal levels of cystine, and showed depressive-like behaviors in the forced-swim test. Administration of NAC reversed these behaviors. This effect was blocked by co-administration of the system xc (-) and GLT-1 inhibitors CPG and DHK, showing that glutamate transporter activity was required for the antidepressant effects of NAC. NAC was also able to specifically increase glutamate in HD mice, in a glutamate transporter-dependent manner. These in vivo changes reflect changes in glutamate transporter protein in HD mice and human HD post-mortem tissue. Furthermore, NAC was able to rescue changes in key glutamate receptor proteins related to excitotoxicity in HD, including NMDAR2B. Thus, we have shown that baseline reductions in cysteine underlie glutamatergic dysfunction and depressive-like behavior in HD and these changes can be rescued by treatment with NAC. These findings have implications for the development of new therapeutic approaches for depressive disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer, the leading cause of cancer in men, has positive survival rates and constitutes a challenge to men with its side effects. Studies have addressed the bivaritate relationships between prostate cancer treatment side effects masculinity, partner relationship, and quality of life (QOL). However, few studies have highlighted the relationships among prostate cancer treatment side effects (i.e., sexual dysfunction, urinary incontinence), masculinity, and relationship with the partner together on QOL in men. Most studies were conducted with predominately Caucasian sample of men. Miami is a unique multiethnic setting that hosts Cuban, Columbian, Venezuelan, Haitian, other Latin American and Caribbean communities that were not represented in previous literature. The purpose of this study was to examine relative contributions of age, ethnicity, sexual dysfunction, urinary incontinence, masculinity, and perception of the relationship with the partner on the quality of life in men diagnosed with prostate cancer. Data were collected using self administered questionnaires measuring demographic variables, sexual and urinary functioning (UCLA PCI), masculinity (CMNI), partner relationship (DAS), and QOL (SF-36). A total of 117 partnered heterosexual men diagnosed with prostate cancer were recruited from four urology clinics in Miami, Florida. Men were 67.47 (SD = 8.42) years old and identified themselves to be of Hispanic origin (54.3 %, n = 63). Findings demonstrated that there was a significant moderate negative relationship between urinary and sexual functioning of men. There was a significant strong negative association between men’s perceived relationship with partner and masculinity. There was a weak negative relationship between the partner relationship and QOL. Hierarchal multiple regression showed that the partner relationship (β = -.25, t (91) = -2.28, p = .03) significantly contributed overall to QOL. These findings highlight the importance of the relationship satisfaction in the QOL of men with prostate cancer. Nursing interventions to enhance QOL for these men should consider strengthening the relationship and involving the female partner as an active participant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular diseases (CVDs) including, hypertension, coronary heart disease and heart failure are the leading cause of death worldwide. Hypertension, a chronic increase in blood pressure above 140/90 mmHg, is the single main contributor to deaths due to heart disease and stroke. In the heart, hypertension results in adaptive cardiac remodelling, including LV hypertrophy to normalize wall stress and maintain cardiac contractile function. However, chronic increases in BP results in the development of hypertensive heart disease (HHD). HHD describes the maladaptive changes during cardiac remodelling which result in reduced systolic and diastolic function and eventually heart failure. This includes ventricular dilation due to eccentric hypertrophy, cardiac fibrosis which stiffens the ventricular wall and microvascular rarefaction resulting in a decrease in coronary blood flow albeit an increase in energy demand. Chronic activation of the renin-angiotensin-system (RAS) with its effector peptide angiotensin (Ang)II plays a key role in the development of hypertension and the maladaptive changes in HHD. Ang II acts via the angiotensin type 1 receptor (AT1R) to mediate most of its pathological actions during HHD, including stimulation of cardiomyocyte hypertrophy, activation of cardiac fibroblasts and increased collagen deposition. The counter-regulatory axis of the RAS which is centred on the ACE2/Ang-(1-7)/Mas axis has been demonstrated to counteract the pathological actions of Ang II in the heart and vasculature. Ang-(1-7) via the Mas receptor prevents Ang II-induced cardiac hypertrophy and fibrosis and improves cardiac contractile function in animal models of HHD. In contrast, less is known about Ang-(1-9) although evidence has demonstrated that Ang-(1-9) also antagonises Ang II and is anti-hypertrophic and anti-fibrotic in animal models of acute cardiac remodelling. However, so far it is not well documented whether Ang-(1-9) can reverse established cardiac dysfunction and remodelling and whether it is beneficial when administered chronically. Therefore, the main aim of this thesis was to assess the effects of chronic Ang-(1-9) administration on cardiac structure and function in a model of Ang II-induced cardiac remodelling. Furthermore, this thesis aimed to investigate novel pathways contributing to the pathological remodelling in response to Ang II. First, a mouse model of chronic Ang II infusion was established and characterised by comparing the structural and functional effects of the infusion of a low and high dose of Ang II after 6 weeks. Echocardiographic measurements demonstrated that low dose Ang II infusion resulted in a gradual decline in cardiac function while a high dose of Ang II induced acute cardiac contractile dysfunction. Both doses equally induced the development of cardiac hypertrophy and cardiac fibrosis characterised by an increase in the deposition of collagen I and collagen III. Moreover, increases in gene expression of fibrotic and hypertrophic markers could be detected following high dose Ang II infusion over 6 weeks. Following this characterisation, the high dose infusion model was used to assess the effects of Ang-(1-9) on cardiac structural and functional remodelling in established disease. Initially, it was evaluated whether Ang-(1-9) can reverse Ang II-induced cardiac disease by administering Ang-(1-9) for 2-4 weeks following an initial 2 week infusion of a high dose of Ang II to induce cardiac contractile dysfunction. The infusion of Ang-(1-9) for 2 weeks was associated with a significant improvement of LV fractional shortening compared to Ang II infusion. However, after 4 weeks fractional shortening declined to Ang II levels. Despite the transient improvement in cardiac contractile function, Ang-(1-9) did not modulate blood pressure, LV hypertrophy or cardiac fibrosis. To further investigate the direct cardiac effects of Ang-(1-9), cardiac contractile performance in response to Ang-(1-9) was evaluated in the isolated Langendorff-perfused rat heart. Perfusion of Ang-(1-9) in the paced and spontaneously beating rat heart mediated a positive inotropic effect characterised by an increase in LV developed pressure, cardiac contractility and relaxation. This was in contrast to Ang II and Ang-(1-7). Furthermore, the positive inotropic effect to Ang-(1-9) was blocked by the AT1R antagonist losartan and the protein kinase A inhibitor H89. Next, endothelial-to-mesenchymal transition (EndMT) as a novel pathway that may contribute to Ang II-induced cardiac remodelling was assessed in Ang II-infused mice in vivo and in human coronary artery endothelial cells (HCAEC) in vitro. Infusion of Ang II to mice for 2-6 weeks resulted in a significant decrease in myocardial capillary density and this was associated with the occurrence of dual labelling of endothelial cells for endothelial and mesenchymal markers. In vitro stimulation of HCAEC with TGFβ and Ang II revealed that Ang II exacerbated TGF-induced gene expression of mesenchymal markers. This was not correlated with any changes in SMAD2 or ERK1/2 phosphorylation with co-stimulation of TGFβ and Ang II. However, superoxide production was significantly increased in HCAEC stimulated with Ang II but not TGFβ. Finally, the role of Ang II in microvesicle (MV)-mediated cardiomyocyte hypertrophy was investigated. MVs purified from neonatal rat cardiac fibroblasts were found to contain detectable Ang II and this was increased by stimulation of fibroblasts with Ang II. Treatment of cardiomyocytes with MVs derived from Ang II-stimulated fibroblasts induced cardiomyocyte hypertrophy which could be blocked by the AT1R antagonist losartan and an inhibitor of MV synthesis and release brefeldin A. Furthermore, Ang II was found to be present in MVs isolated from serum and plasma of Ang II-infused mice and SHRSP and WKY rats. Overall, the findings of this thesis demonstrate for the first time that the actions of Ang-(1-9) in cardiac pathology are dependent on its time of administration and that Ang-(1-9) can reverse Ang II-induced cardiac contractile dysfunction by acting as a positive inotrope. Furthermore, this thesis demonstrates evidence for an involvement of EndMT and MV signalling as novel pathways contributing to Ang II-induced cardiac fibrosis and hypertrophy, respectively. These findings provide incentive to further investigate the therapeutic potential of Ang-(1-9) in the treatment of cardiac contractile dysfunction in heart disease, establish the importance of novel pathways in Ang II-mediated cardiac remodelling and evaluate the significance of the presence of Ang II in plasma-derived MVs.