925 resultados para Cytosolic Calcium
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
New pit-and-fissure sealants with the capacity to release calcium and phosphate because of the presence of ACP have been introduced into the dental marketplace. With the continuous introduction of new dental materials, it is important not only to research and confirm their properties, but also to propose modifications or associations that may contribute to their improvement.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A CURRENT EXAMINATION OF DIETARY INTAKES OF FIBER, CALCIUM, IRON, AND ZINC AND THEIR RELATIONSHIP TO BLOOD LEAD LEVELS IN U.S. CHILDREN AGED 1-5 YEARS Stephanie Ann Melchert, M.S. University of Nebraska, 2010 Adviser: Kaye Stanek Krogstrand The effect of lead on the health and well-being of those exposed has been well documented and many efforts have been made to reduce exposure of lead to the United States population. Despite these efforts, many studies have documented cognitive impairments and behavioral problems in children with even low levels of lead in their blood. Previous studies have suggested that a proper diet may have a role in the prevention of elevated blood lead levels in children. The objective of this study was to determine if there was an inverse correlation of blood lead levels (BLL) in children to their dietary intakes of fiber, calcium, iron, and zinc considering low levels of lead exposure. This study examined 1019 children in the National Health and Nutrition Examination Survey (NHANES) conducted from 2005-2006. Data were analyzed using Spearman’s rank correlations to correlate continuous variables to BLL in children and independent samples t-tests were used to compare mean blood lead levels of categorical variables. Results indicate that BLL in children is significantly correlated with and weight, recumbent length/standing height, dietary fiber intake and continine, a marker of cigarette smoke exposure. BLL was not significantly correlated with calcium, iron, zinc, or vitamin C. A significant difference was found in the mean BLL of children who took supplements, lived in smoking homes, as well as those who lived in homes built before 1978. Overall, this study shows that children living in homes built before 1978 remain at greater risk for lead exposure, and adequate dietary fiber intake may provide benefits to children who are exposed to lead.
Resumo:
Little information is available related to adolescent calcium intake and relationships with injuries they might suffer from sport participation. To determine calcium intake of high school athletes, to assess their self reported injury rates, and to examine the relationship between the two over a 12 month period of time. Participants received a questionnaire at their school and completed it anywhere they found convenient. Adolescent athletes in the Lincoln Public School system (n=43) that participated in at least one sport in the past year. Four age groups participated in the study with sixteen year olds having a significantly higher calcium intake at 1297 mg that of fourteen year olds. A variety of sports were represented with largest number of respondents participating in baseball/or softball at (55%). The next most played sport was basketball at (18%). Median total diet calcium was 1144.5 mg with a mean of 1182 mg + 567 mg. For the frequency of injuries that caused a missed practice or game in the past year, ankle injuries were the most common (25%). Knee injuries were the second most common (17%), followed closely by hand injuries (8%). Mean total diet calcium of athletes with five or more injuries that caused a missed practice or game was significantly higher at 1966 mg (P<.05) than athletes mean diet calcium with zero, one, two, and three injuries. Total milk calcium of those who reported three injuries that resulted in broken or fractured bones or dislocated joints was significantly higher (P<.05) at 1286 mg of total milk calcium than those who reported having zero, one, or two breaks or fractures. Athletes with higher calcium intakes have a higher number of reported injuries. This may be the result of increased vigorous activity which leads to increased calorie and calcium consumption. More importantly, this increased activity leads to an increased chance of injury. The greater calcium intake correlated with greater number of injuries may also be because of third parties advising the athletes who get injured to drink more milk and get more calcium in their diets because they have been injuries already.
Resumo:
Changes in bioavailability of phosphorus (P) during pedogenesis and ecosystem development have been shown for geogenic calcium phosphate (Ca-P). However, very little is known about long-term changes of biogenic Ca-P in soil. Long-term transformation characteristics of biogenic Ca-P were examined using anthropogenic soils along a chronosequence from centennial to millennial time scales. Phosphorus fractionation of Anthrosols resulted in overall consistency with the Walker and Syers model of geogenic Ca-P transformation during pedogenesis. The biogenic Ca-P (e.g., animal and fish bones) disappeared to 3% of total P within the first ca. 2,000 years of soil development. This change concurred with increases in P adsorbed on metal-oxides surfaces, organic P, and occluded P at different pedogenic time. Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy revealed that the crystalline and therefore thermodynamically most stable biogenic Ca-P was transformed into more soluble forms of Ca-P over time. While crystalline hydroxyapatite (34% of total P) dominated Ca-P species after about 600-1,000 years, beta-tricalcium phosphate increased to 16% of total P after 900-1,100 years, after which both Ca-P species disappeared. Iron-associated P was observable concurrently with Ca-P disappearance. Soluble P and organic P determined by XANES maintained relatively constant (58-65%) across the time scale studied. Disappearance of crystalline biogenic Ca-P on a time scale of a few thousand years appears to be ten times faster than that of geogenic Ca-P.
Resumo:
Protein interactions are crucial for most cellular process. Thus, rationally designed peptides that act as competitive assembly inhibitors of protein interactions by mimicking specific, determined structural elements have been extensively used in clinical and basic research. Recently, mammalian cells have been shown to contain a large number of intracellular peptides of unknown function. Here, we investigate the role of several of these natural intracellular peptides as putative modulators of protein interactions that are related to Ca2+-calmodulin (CaM) and 14-3-3 epsilon, which are proteins that are related to the spatial organization of signal transduction within cells. At concentrations of 1-50 mu M, most of the peptides that are investigated in this study modulate the interactions of CaM and 14-3-3 epsilon with proteins from the mouse brain cytoplasm or recombinant thimet oligopeptidase (EP24.15) in vitro, as measured by surface plasmon resonance. One of these peptides (VFDVELL; VFD-7) increases the cytosolic Ca2+ concentration in a dose-dependent manner but only if introduced into HEK293 cells, which suggests a wide biological function of this peptide. Therefore, it is exciting to suggest that natural intracellular peptides are novel modulators of protein interactions and have biological functions within cells.
Resumo:
The rapid (2 min) nongenomic effects of aldosterone (ALDO) and/or spironolactone (MR antagonist), RU 486 (GR antagonist), atrial natriuretic peptide (ANP) and dimethyl-BAPTA (BAPTA) on the intracellular pH recovery rate (pHirr) via NHE1 (basolateral Na+/H+ exchanger isoform), after the acid load induced by NH4Cl, and on the cytosolic free calcium concentration ([Ca2+](i)) were investigated in the proximal S3 segment isolated from rats, by the probes BCECF-AM and FLUO-4-AM, respectively. The basal pHi was 7.15+/-0.008 and the basal pHirr was 0.195+/-0.012 pH units/min (number of tubules/number of tubular areas = 16/96). Our results confirmed the rapid biphasic effect of ALDO on NHE1: ALDO (10(-12) M) increases the pHirr to approximately 59% of control value, and ALDO (10(-6)M) decreases it to approximately 49%. Spironolactone did not change these effects, but RU 486 inhibited the stimulatory effect and maintained the inhibitory effect. ANP (10(-6) M) or BAPTA (5 x 10(-5) M) alone had no significant effect on NHE1 but prevented both effects of ALDO on this exchanger. The basal [Ca2+](i) was 104+/-3 nM (15), and ALDO (10(-12) or 10(-6) M) increased the basal [Ca2+](i) to approximately 50% or 124%, respectively. RU 486, ANP and BAPTA decreased the [Ca2+](i) and inhibited the stimulatory effect of both doses of ALDO. The results suggest the involvement of GR on the nongenomic effects of ALDO and indicate a pHirr-regulating role for [Ca2+](i) that is mediated by NHE1, stimulated/impaired by ALDO, and affected by ANP or BAPTA with ALDO. The observed nongenomic hormonal interaction in the S3 segment may represent a rapid and physiologically relevant regulatory mechanism in the intact animal under conditions of volume alterations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: The aim of the present study was to evaluate the physicochemical properties of a bioceramic root canal sealer, Endosequence BC Sealer. Radiopacity, pH, release of calcium ions (Ca2+), and flow were analyzed, and the results were compared with AH Plus cement. Methods: Radiopacity and flow were evaluated according to ISO 6876/2001 standards. For the radiopacity analysis, metallic rings with 10-mm diameter and 1-mm thickness were filled with cements. The radiopacity value was determined according to radiographic density (mm Al). The flow test was performed with 0.05 mL of cement placed on a glass plate. A 120-g weight was carefully placed over the cement. The largest and smallest diameters of the disks formed were measured by using a digital caliper. The release of Ca2+ and pH were measured at periods of 3, 24, 72, 168, and 240 hours with spectrophotometer and pH meter, respectively. Data were analyzed by analysis of variance and Tukey test (P < .05). Results: The bioceramic endodontic cement showed radiopacity (3.84 mm Al) significantly lower than that of AH Plus (6.90 mm Al). The pH analysis showed that Endosequence BC Sealer showed pH and release of Ca2+ greater than those of AH Plus (P < .05) during the experimental periods. The flow test revealed that BC Sealer and AH Plus presented flow of 26.96 mm and 21.17 mm, respectively (P < .05). Conclusions: Endosequence BC Sealer showed radiopacity and flow according to ISO 6876/2001 recommendations. The other physicochemical properties analyzed demonstrated favorable values for a root canal sealer. (J Endod 2012;38:842-845)
Resumo:
This study assess the effects of bioceramic and poly(lactic-co-glycolic acid) composite (BCP/PLGA) on the viability of cultured macrophages and human dental pulp fibroblasts, and we sought to elucidate the temporal profile of the reaction of pulp capping with a composite of bioceramic of calcium phosphate and biodegradable polymer in the progression of delayed dentine bridge after (30 and 60 days) in vivo. Histological evaluation of inflammatory infiltrate and dentin bridge formation were performed after 30 and 60 days. There was similar progressive fibroblast growth in all groups and the macrophages showed viability. The in vivo study showed that of the three experimental groups: BCP/PLGA composite, BCP and calcium hydroxide (Ca(OH)(2)) dentin bridging was the most prevalent (90 %) in the BCP/PLGA composite after 30 days, mild to moderate inflammatory response was present throughout the pulp after 30 days. After 60 days was observed dentine bridging in 60 % and necrosis in 40 %, in both groups. The results indicate that understanding BCP/PLGA composite is biocompatible and by the best tissue response as compared to calcium hydroxide in direct pulp capping may be important in the mechanism of delayed dentine bridge after 30 and 60 days.
Resumo:
Calcium carbonate is one of the most important biominerals, and it is the main constituent of pearls, seashells, and teeth. The in vitro crystallization of calcium carbonate using different organic matrices as templates has been reported. In this work, the growth of calcium carbonate thin films on special organic matrices consisting of layer-by-layer (LbL) polyelectrolyte films deposited on a pre-formed phospholipid Langmuir-Blodgett (LB) film has been studied. Two types of randomly coiled polyelectrolytes have been used: lambda-carrageenan and poly(acrylic acid). A precoating comprised of LB films has been prepared by employing a negatively charged phospholipid, the sodium salt of dimyristoilphosphatidyl acid (DMPA), or a zwitterionic phospholipid, namely dimyristoilphosphatidylethanolamine (DMPE). This approach resulted in the formation of particulate calcium carbonate continuous films with different morphologies, particle sizes, and roughness, as revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The crystalline structure of the calcium carbonate particles was analyzed by Raman spectroscopy. The randomly coiled conformation of the polyelectrolytes seems to be the main reason for the formation of continuous films rather than CaCO3 isolated crystals. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We have studied the influence of SiO2 content on the spectroscopic properties and laser emission efficiency of Yb3+-Er3+ co-doped calcium aluminosilicate glasses. An increase in SiO2 content resulted in higher phonon energy, which reduced the up-conversion emission, enhanced the energy transfer efficiency up to 70 % from Yb3+ to Er3+, and enhanced the optical quality. All these results led to an increase from 20 to 30 % in the laser emission efficiency.
Resumo:
Sex differences in Ca2+-dependent signalling and homoeostasis in the vasculature of hypertensive rats are well characterized. However, sex-related differences in SOCE (store-operated Ca2+ entry) have been minimally investigated. We hypothesized that vascular protection in females, compared with males, reflects decreased Ca2+ mobilization due to diminished activation of Orai 1/STIM 1 (stromal interaction molecule I). In addition, we investigated whether ovariectomy in females affects the activation of the Orai 1/STIM 1 pathway. Endothelium-denuded aortic rings from male and female SHRSP (stroke-prone spontaneously hypertensive rats) and WKY (Wistar Kyoto) rats and from OVX (ovariectomized) or sham female SHRSP and WKY rats were used to functionally evaluate Ca2+ influx-induced contractions. Compared with females, aorta from male SHRSP displayed: (i) increased contraction during the Ca2+-loading period; (ii) similar transient contraction during Ca2+ release from the intracellular stores; (iii) increased activation of STIM 1 and Orai1, as shown by the blockade of STIM 1 and Orai1 with neutralizing antibodies, which reversed the sex differences in contraction during the Ca2+-loading period; and (iv) increased expression of STIM I and Orai I. Additionally, we found that aortas from OVX-SHRSP showed increased contraction during the Ca2+-loading period and increased Orai1 expression, but no changes in the SR (sarcoplasmic reticulum)-buffering capacity or STIM I expression. These findings suggest that augmented activation of STIM 1/Orai 1 in aortas from male SHRSP represents a mechanism that contributes to sex-related impaired control of intracellular Ca2+ levels. Furthermore, female sex hormones may negatively modulate the STIM/Orai 1 pathway, contributing to vascular protection observed in female rats.
Resumo:
This work aims to evaluate the cytocompatibility of injectable and moldable restorative biomaterials based on granules of dense or porous biphasic calcium phosphates (BCPs) with human primary mesenchymal cells, in order to validate them as tools for stem cell-induced bone regeneration. Porous hydroxyapatite (HA) and HA/beta-tricalcium phosphate (beta-TCP) (60: 40) granules were obtained by the addition of wax spheres and pressing at 20 MPa, while dense materials were compacted by pressing at 100 MPa, followed by thermal treatment (1100 degrees C), grinding, and sieving. Extracts were prepared by 24-h incubation of granules on culture media, with subsequent exposition of human primary mesenchymal cells. Three different cell viability parameters were evaluated on the same samples. Scanning electron microscopy analysis of the granules revealed distinct dense and porous surfaces. After cell exposition to extracts, no significant differences on mitochondrial activity (2,3-bis(2-methoxy-4-nitro-5-sulfophenly)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide) or cell density (Crystal Violet Dye Elution) were observed among groups. However, Neutral Red assay revealed that dense materials extracts induced lower levels of total viable cells to porous HA/beta-TCP (P < 0.01). Calcium ion content was also significantly lower on the extracts of dense samples. Porogenic treatments on BCP composites do not affect cytocompatibility, as measured by three different parameters, indicating that these ceramics are well suited for further studies on future bioengineering applications.