911 resultados para Cosmic-ray interactions with the Earth
Resumo:
Kelp forests dominate temperate and polar rocky coastlines and represent critical marine habitats because they support elevated rates of primary and secondary production and high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-native species, such as the Japanese kelp Undariapinnatifida (‘Wakame’), which has recently colonised natural habitats in the UK. We quantified the abundance and biomass of U. pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-associated assemblages were similar to those associated with Saccorhiza polyschides, which has a similar life history and growth strategy. Our results suggest that a shift towards U. pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local biodiversity, although this could be offset, to some extent, by the climate-driven proliferation of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics and competitive interactions between these habitat-forming species is needed to accurately predict future biodiversity patterns.
Resumo:
The unrestrained proliferation of cancer cells requires a high level of ribosome biogenesis. The first stage of ribosome biogenesis is the transcription of the large ribosomal RNAs (rRNAs); the structural and functional components of the ribosome. Transcription of rRNA is carried out by RNA Polymerase I (Pol-I) and its associated holoenzyme complex. Here we report that BRCA1, a nuclear phosphoprotein, and a known tumour suppressor involved in variety of cellular processes such as DNA damage response, transcriptional regulation, cell cycle control and ubiquitylation, is associated with rDNA repeats, in particular with the regulatory regions of the rRNA gene. We demonstrate that BRCA1 interacts directly with the basal Pol-I transcription factors; upstream binding factor (UBF), selectivity factor-1 (SL1) as well as interacting with RNA Pol-I itself. We show that in response to DNA damage, BRCA1 occupancy at the rDNA repeat is decreased and the observed BRCA1 interactions with the Pol-I transcription machinery are weakened. We propose, therefore, that there is a rDNA associated fraction of BRCA1 involved in DNA damage dependent regulation of Pol-I transcription, regulating the stability and formation of the Pol-I holoenzyme during initiation and/or elongation in response to DNA damage.
Resumo:
Increasing temperatures resulting from climate change have within recent years been shown to advance phenological events in a large number of species worldwide. Species can differ in their response to increasing temperatures, and understanding the mechanisms that determine the response is therefore of great importance in order to understand and predict how a warming climate can influence both individual species, but also their interactions with each other and the environment. Understanding the mechanisms behind responses to increasing temperatures are however largely unexplored. The selected study system consisting of host plant species of the Brassicaceae family and their herbivore Anthocharis cardamines, is assumed to be especially vulnerable to climatic variations. Through the use of this study system, the aim of this thesis is to study differences in the effect of temperature on development to start of flowering within host plant species from different latitudinal regions (study I), and among host plant species (study II). We also investigate whether different developmental phases leading up to flowering differ in sensitivity to temperature (study II), and if small-scale climatic variation in spring temperature influence flowering phenology and interactions with A. cardamines (study III). Finally, we investigate if differences in the timing of A. cardamines relative to its host plants influence host species use and the selection of host individuals differing in phenology within populations (study IV). Our results showed that thermal reaction norms differ among regions along a latitudinal gradient, with the host plant species showing a mixture of co-, counter- and mixed gradient patterns (study I). We also showed that observed differences in the host plant species order of flowering among regions and years might be caused by both differences in the distribution of warm days during development and differences in the sensitivity to temperature in different phases of development (study II). In addition, we showed that small-scale variations in temperature led to variation in flowering phenology among and within populations of C. pratensis, impacting the interactions with the butterfly herbivore A. cardamines. Another result was that the less the mean plant development stage of a given plant species in the field deviated from the stage preferred by the butterfly for oviposition, the more used was the species as a host by the butterfly (study IV). Finally, we showed that the later seasonal appearance of the butterflies relative to their host plants, the higher butterfly preference for host plant individuals with a later phenology, corresponding to a preference for host plants in earlier development stages (study IV). For our study system, this thesis suggest that climate change will lead to changes in the interactions between host plants and herbivore, but that differences in phenology among host plants combined with changes in host species use of the herbivore might buffer the herbivore against negative effects of climate change. Our work highlights the need to understand the mechanisms behind differences in the responses of developmental rates to temperature between interacting species, as well as the need to account for differences in temperature response for interacting organisms from different latitudinal origins and during different developmental phases in order to understand and predict the consequences of climate change.
Resumo:
An important aspect of sustainability is to maintain biodiversity and ecosystem functioning while improving human well-being. For this, the ecosystem service (ES) approach has the potential to bridge the still existing gap between ecological management and social development, especially by focusing on trade-offs and synergies between ES and between their beneficiaries. Several frameworks have been proposed to account for trade-offs and synergies between ES, and between ES and other components of social-ecological systems. However, to date, insufficient explicit attention has been paid to the three facets encompassed in the ES concept, namely potential supply, demand, and use, leading to incomplete descriptions of ES interactions. We expand on previous frameworks by proposing a new influence network framework (INF) based on an explicit consideration of influence relationships between these three ES facets, biodiversity, and external driving variables. We tested its ability to provide a comprehensive view of complex social-ecological interactions around ES through a consultative process focused on environmental management in the French Alps. We synthetized the interactions mentioned during this consultative process and grouped variables according to their overall propensity to influence or be influenced by the system. The resulting directed sequence of influences distinguished between: (1) mostly influential variables (dynamic social variables and ecological state variables), (2) target variables (provisioning and cultural services), and (3) mostly impacted variables (regulating services and biodiversity parameters). We discussed possible reasons for the discrepancies between actual and perceived influences and proposed options to overcome them. We demonstrated that the INF holds the potential to deliver collective assessments of ES relations by: (1) including ecological as well as social aspects, (2) providing opportunities for colearning processes between stakeholder groups, and (3) supporting communication about complex social-ecological systems and consequences for environmental management.
Resumo:
Computer games such as Unreal Tournament (UT2004 and UT3) contain a 'physics engine' responsible for producing believable dynamic interactions between players and objects in the three-dimensional (3D) virtual world of a game. Through a series of probing experiments we have evaluated the fidelity and internal consistency of the UT2004 physics engine. These experiments have then led to the production of resources which may be used by learners and teachers of secondary-school physics. We also suggest an approach to learning, where both teachers and pupils may produce learning materials using the Unreal Tournament editor 'UnrealEd'.
Resumo:
The importance of RNA as a mediator of genetic information is widely appreciated. RNA molecules also participate in the regulation of various post-transcriptional activities, such as mRNA splicing, editing, RNA stability and transport. Their regulatory roles for these activities are highly dependent on finely tuned associations with cognate proteins. The RNA recognition motif (RRM) is an ancient RNA binding module that participates in hundreds of essential activities where specific RNA recognition is required. We have applied phage display and site-directed mutagenesis to dissect principles of RRM-controlled RNA recognition. The model systems we are investigating are U1A and CUG-BP1. In this dissertation, the molecular basis of the binding affinity of U1A-RNA beyond individual contacts was investigated. We have identified and evaluated the contributions of the local cooperativity formed by three neighboring residues (Asn15, Asn16 and Glu19) to the stability of the U1A-RNA complex. The localized cooperative network was mapped by double-mutant cycles and explored using phage display. We also showed that a cluster of these residues forms a “hot spot” on the surface of U1A; a single substitution at position 19 with Gln or His can alter the binding properties of U1A to recognize a non-cognate G4U RNA. Finally, we applied a deletion analysis of CUG-BP1 to define the contributions of individual RRMs and RRM combinations to the stability of the complex formed between CUG-BP1 and the GRE sequence. The preliminary results showed RRM3 of CUG-BP1 is a key domain for RNA binding. It possibly binds to the GRE sequence cooperatively with RRM2 of CUG-BP1. RRM1 of CUG-BP1 is not required for GRE recognition, but may be important for maintaining the stability of the full-length CUG-BP1.
Resumo:
Trypanosoma cruzi, the causative agent of Chagas Disease, is phylogenetically distributed into nearly identical genetic strains which show divergent clinical presentations including differences in rates of cardiomyopathy in humans, different vector species and transmission cycles, and differential congenital transmission in a mouse model. The population structure of these strains divides into two groups, which are geographically and clinically distinct. The aim of this study was to compare the transcriptome of two strains of T. cruzi, Sylvio vs. Y to identify differences in expression that could account for clinical and biochemical differences. We collected and sequenced RNA from T. cruzi-infected and control Human Foreskin Fibroblasts at three timepoints. Differential expression analysis identified gene expression profiles at different timepoints in Sylvio infections, and between Sylvio and Y infections in both parasite and host. The Sylvio strain parasite and the host response to Sylvio infection largely mirrored the host-pathogen interaction seen in our previous Y strain work. IL-8 was more highly expressed in Sylvio-infected HFFs than in Y-infected HFFs.
Resumo:
Wnt signalling is involved in a wide range of physiological and pathological processes. The presence of an extracellular Wnt stimulus induces cytoplasmic stabilisation and nuclear translocation of beta-catenin, a protein that also plays an essential role in cadherin-mediated adhesion. Two main hypotheses have been proposed concerning the balance between beta-catenin's adhesive and transcriptional functions: either beta-catenin's fate is determined by competition between its binding partners, or Wnt induces folding of beta-catenin into a conformation allocated preferentially to transcription. The experimental data supporting each hypotheses remain inconclusive. In this paper we present a new mathematical model of the Wnt pathway that incorporates beta-catenin's dual function. We use this model to carry out a series of in silico experiments and compare the behaviour of systems governed by each hypothesis. Our analytical results and model simulations provide further insight into the current understanding of Wnt signalling and, in particular, reveal differences in the response of the two modes of interaction between adhesion and signalling in certain in silico settings. We also exploit our model to investigate the impact of the mutations most commonly observed in human colorectal cancer. Simulations show that the amount of functional APC required to maintain a normal phenotype increases with increasing strength of the Wnt signal, a result which illustrates that the environment can substantially influence both tumour initiation and phenotype.
Resumo:
Over the past several decades, thousands of otoliths, bivalve shells, and scales have been collected for the purposes of age determination and remain archived in European and North American fisheries laboratories. Advances in digital imaging and computer software combined with techniques developed by tree-ring scientists provide a means by which to extract additional levels of information in these calcified structures and generate annually resolved (one value per year), multidecadal time-series of population-level growth anomalies. Chemical and isotopic properties may also be extracted to provide additional information regarding the environmental conditions these organisms experienced.Given that they are exactly placed in time, chronologies can be directly compared to instrumental climate records, chronologies from other regions or species, or time-seriesof other biological phenomena. In this way, chronologies may be used to reconstruct historical ranges of environmental variability, identify climatic drivers of growth, establish linkages within and among species, and generate ecosystem-level indicators. Following the first workshop in Hamburg, Germany, in December 2014, the second workshop on Growth increment Chronologies in Marine Fish: climate-ecosystem interactions in the North Atlantic (WKGIC2) met at the Mediterranean Institute for Advanced Studies headquarters in Esporles, Spain, on 18–22 April 2016, chaired by Bryan Black (USA) and Christoph Stransky (Germany).Thirty-six participants from fifteen different countries attended. Objectives were to i) review the applications of chronologies developed from growth-increment widths in the hard parts (otoliths, shells, scales) of marine fish and bivalve species ii) review the fundamentals of crossdating and chronology development, iii) discuss assumptions and limitations of these approaches, iv) measure otolith growth-increment widths in image analysis software, v) learn software to statistically check increment dating accuracy, vi) generate a growth increment chronology and relate it to climate indices, and vii) initiate cooperative projects or training exercises to commence after the workshop.The workshop began with an overview of tree-ring techniques of chronology development, including a hands-on exercise in cross dating. Next, we discussed the applications of fish and bivalve biochronologies and the range of issues that could be addressed. We then reviewed key assumptions and limitations, especially those associated with short-lived species for which there are numerous and extensive otolith archives in European fisheries labs. Next, participants were provided with images of European plaice otoliths from the North Sea and taught to measure increment widths in image analysis software. Upon completion of measurements, techniques of chronology development were discussed and contrasted to those that have been applied for long-lived species. Plaice growth time-series were then related to environmental variability using the KNMI Climate Explorer. Finally, potential future collaborations and funding opportunities were discussed, and there was a clear desire to meet again to compare various statistical techniques for chronology development using a range existing fish, bivalve, and tree growth-increment datasets. Overall, we hope to increase the use of these techniques, and over the long term, develop networks of biochronologies for integrative analyses of ecosystem functioning and relationships to long-term climate variability and fishing pressure.
Resumo:
El siguiente ensayo sintetiza y describe el proyecto de investigación creación ¿Cuál realidad? cuyo objetivo es la creación y análisis de una práctica artística como forma de entender y generar conocimiento a partir de las manifestaciones y acontecimientos sociales y culturales en diversos lugares de la frontera sur de México. Lo que se busca es reflexionar acerca de las fronteras, no sólo como lo que delimita el fin o el principio de los territorios de estados nacionales o geográficos, sino como productoras simbólicas de las diferencias entre las personas, recalcando todo aquello en lo que no son iguales por encima de lo que tienen en común. Los espacios geopolíticos que delimitan el territorio de un estado-nación son el repertorio palpable de la movilidad de personas, cosas y acontecimientos. Estas prácticas son efectuadas de manera más o menos visible y demuestran que existen y han estado ahí constantemente redes de comunicación y formas de acción común, que tienen como fin procurar bienestar y elevar la calidad de vida de los partícipes. El proyecto ¿Cuál realidad? en su materialidad y visibilidad fue planteado como una serie de intervenciones en sitio, tales como esculturas públicas, instalaciones, acciones participativas, fotografía y video, a partir de la interacción en algunas ciudades fronterizas en los estados de Chiapas, Tabasco y Quintana Roo y su colindancia con los países de Guatemala y Belice. La producción a girado entorno a las siguientes tres líneas de búsqueda temática: La línea fronteriza, el espacio físico; las personas y grupos que confluyen en estos territorios; el contrabando de cosas y el trasiego de las personas entre los países o en el interior del territorio nacional (entre ciudades del mismo estado, inmigrantes rurales etc.). Los lugares seleccionados son significativos de la frontera sur y tanto las esculturas como las intervenciones han sido construidas con objetos y/o procesos que funcionen simbólicamente para los grupos o habitantes de la zona y en colaboración con ellos: objetos útiles para el trabajo, procesos de transformación de materiales, técnicas de fabricación artesanal, ropa, donaciones, entre muchas otras construcciones.
Resumo:
Tese de Doutoramento em Ciências Veterinárias na Especialidade de Ciências Biológicas e Biomédicas
Resumo:
The response regulator RpaB (regulator of phycobilisome associated B), part of an essential two-component system conserved in cyanobacteria that responds to multiple environmental signals, has recently been implicated in the control of cell dimensions and of circadian rhythms of gene expression in the model cyanobacterium Synechococcus elongatus PCC 7942. However, little is known of the molecular mechanisms that underlie RpaB functions. In this study we show that the regulation of phenotypes by RpaB is intimately connected with the activity of RpaA (regulator of phycobilisome associated A), the master regulator of circadian transcription patterns. RpaB affects RpaA activity both through control of gene expression, a function requiring an intact effector domain, and via altering RpaA phosphorylation, a function mediated through the N-terminal receiver domain of RpaB. Thus, both phosphorylation cross-talk and coregulation of target genes play a role in the genetic interactions between the RpaA and RpaB pathways. In addition, RpaB∼P levels appear critical for survival under light:dark cycles, conditions in which RpaB phosphorylation is environmentally driven independent of the circadian clock. We propose that the complex regulatory interactions between the essential and environmentally sensitive NblS-RpaB system and the SasA-RpaA clock output system integrate relevant extra- and intracellular signals to the circadian clock.
Resumo:
The apparent simplicity of viruses hides the complexity of their interactions with their hosts. Viruses are masters at circumventing host defenses and manipulating the cellular environment for their own benefit. The replication of the largest known family of single-stranded DNA viruses, Geminiviridae, is impaired by DNA methylation and Arabidopsis mutants affected in cytosine methylation are hypersusceptible to geminivirus infection. This implies that plants might use methylation as a defense against geminiviruses and that the viral genome is a target for plant DNA methyltransferases. We have found a novel counter-defense strategy used by geminiviruses, that reduces the expression of the plant maintenance DNA methyltransferases, MET1 and CMT3, in both, locally and systemically infected tissues. Furthermore, we demonstrated that the virus-mediated repression of these two maintenance DNA methyltransferases is widely spread among different geminivirus species. Additionally, we identified Rep as the geminiviral protein responsible for the repression of MET1 and CMT3, and another viral protein, C4, as an ancillary player in MET1 downregulation. The presence of Rep, suppresses TGS of an Arabidopsis transgene and of host loci whose expression is strongly controlled by CG methylation. Bisulfite sequencing analyses showed that the expression of Rep caused a substantial reduction in the levels of DNA methylation at CG sites. Our findings suggest that Rep, the only viral protein essential for geminiviral replication, displays TGS suppressor activity through a mechanism distinct from the one thus far described for geminiviruses.
Resumo:
We present a search for ultrarelativistic magnetic monopoles with the Pierre Auger observatory. Such particles, possibly a relic of phase transitions in the early Universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic rays (UHECRs). The air-shower profile of a magnetic monopole can be effectively distinguished by the fluorescence detector from that of standard UHECRs. No candidate was found in the data collected between 2004 and 2012, with an expected background of less than 0.1 event from UHECRs. The corresponding 90% confidence level (C.L.) upper limits on the flux of ultrarelativistic magnetic monopoles range from 10(-1)9 (cm(2) sr s)(-1) for a Lorentz factor gamma = 10(9) to 2.5 x 10(-21) (cm(2) sr s)(-1) for gamma = 10(12). These results-the first obtained with a UHECR detector-improve previously published limits by up to an order of magnitude.
Resumo:
In this work, we report theoretical and experimental cross sections for elastic scattering of electrons by chlorobenzene (ClB). The theoretical integral and differential cross sections (DCSs) were obtained with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR). The calculations with the SMCPP method were done in the static-exchange (SE) approximation, for energies above 12 eV, and in the static-exchange plus polarization approximation, for energies up to 12 eV. The calculations with the IAM-SCAR method covered energies up to 500 eV. The experimental differential cross sections were obtained in the high resolution electron energy loss spectrometer VG-SEELS 400, in Lisbon, for electron energies from 8.0 eV to 50 eV and angular range from 7 degrees to 110 degrees. From the present theoretical integral cross section (ICS) we discuss the low-energy shape-resonances present in chlorobenzene and compare our computed resonance spectra with available electron transmission spectroscopy data present in the literature. Since there is no other work in the literature reporting differential cross sections for this molecule, we compare our theoretical and experimental DCSs with experimental data available for the parent molecule benzene. Published by AIP Publishing.