994 resultados para Correlation Functions
Resumo:
We study the space of bandlimited Lipschitz functions in one variable. In particular we provide a geometrical description of interpolating and sampling sequences for this space. We also give a description of the trace of such functions to sequences of critical density in terms of a cancellation condition.
Resumo:
1. Abstract Cervical cancer is thought to be the consequence of infection by human papillomaviruses (HPV). In the majority of cases, DNA from HPV type 16 (HPV16) is found in malignant cervical lesions. The initial steps leading to transformation of an infected cell are not clearly understood but in most cases, disruption and integration of the episomal viral DNA must take place. As a consequence, the E2 and E4 genes are usually not expressed whereas the E6 and E7 oncogenes are highly expressed. However, in a normal infection in which the viral DNA is maintained as an episome, all viral genes are expressed. The pattern according to which the viral proteins are made, and therefore the life cycle of the virus, is tightly linked to the differentiation process of the host keratinocyte. The study of the viral oncogenes E6 and E7 has revealed crucial functions in the process of malignant transformation such as degradation of the p53 tumor suppressor protein, deregulation of the Retinoblastoma protein pathway and activation of the telomerase ribonucleoprotein. All these steps are necessary for cancerous lesions to develop. However, the loss of the E2 gene product seems to be necessary for sufficient expression of E6 and E7 in order to achieve such effects. In normal infections, the E4 protein is made abundantly in the later stages of the viral life cycle. Though extensive amounts of work have been carried out to define the function of E4, it still remains unclear. In this study, several approaches have been used to try and determine the functions of E4. First, a cell-penetrating fusion protein was designed and produced in order to circumvent the chronic difficulties of expressing E4 in mammalian cells. Unfortunately, this approach was not successful due to precipitation of the purified fusion protein. Second, the observation that E4 accumulates in cells having modified their adhesion properties led to the hypothesis that E4 might be involved in the differentiation process of keratinocytes. Preliminary results suggest that E4 triggers differentiation. Last, as E4 has been reported to collapse the cytokeratin network of keratinocytes, a direct approach using atomic force microscopy has allowed us to test the potential modification of mechanical properties of cells harboring reorganized cytokeratin networks. If so, a potential role for E4 in viral particle release could be hypothesized. 2. Résumé Il a été établi que le cancer du col de l'utérus se développe essentiellement à la suite d'une infection par le virus du papillome humain (HPV). Dans la majorité des cas analysés, de l'ADN du HPV de type 16 (HPV16) est détecté. Les étapes initiales de la transformation d'une cellule infectée sont mal connues mais il semble qu'une rupture du génome viral, normalement épisomal, suivi d'une intégration dans le génome de la cellule hôte soient des étapes nécessaires dans la plupart des cas. Or il semble qu'il y ait une sélection pour les cas où l'expression des oncogènes viraux E6 et E7 soit favorisée alors que l'expression des gènes E2 et E4 est en général impossible. Par contre, dans une infection dite normale où le génome viral n'est pas rompu, il n'y pas développement de cancer et tous les gènes viraux sont exprimés. L'ordre dans lequel les protéines virales sont produites, et donc le cycle de réplication du virus, est intimement lié au processus de différentiation de la cellule hôte. L'étude des protéines oncogènes E6 et E7 a révélé des fonctions clés dans le processus de transformation des cellules infectées telles que la dégradation du suppresseur de tumeur p53, la dérégulation de la voie de signalisation Rb ainsi que l'activation de la télomérase. Toutes ces activités sont nécessaires au développement de lésions cancéreuses. Toutefois, il semble que l'expression du gène E2 doit être empêchée afin que suffisamment des protéines E6 et E7 soient produites. Lorsque le gène E2 est exprimé, et donc lorsque le génome viral n'est pas rompu, les protéines E6 et E7 n'entraînent pas de telles conséquences. Le gène E4, qui se trouve dans la séquence codante de E2, a aussi besoin d'un génome viral intact pour être exprimé. Dans une infection normale, le gène E4 est exprimé abondamment dans les dernières étapes de la réplication du virus. Bien que de nombreuses études aient été menées afin de déterminer la fonction virale à E4, aucun résultat n'apparaît évident. Dans ce travail, plusieurs approches ont été utilisées afin d'adresser cette question. Premièrement, une protéine de fusion TAT-E4 a été produite et purifiée. Cette protéine, pouvant entrer dans les cellules vivantes par diffusion au travers de la membrane plasmique, aurait permis d'éviter ainsi les problèmes chroniques rencontrés lors de l'expression de E4 dans les cellules mammifères. Malheureusement, cette stratégie n'a pas pu être utilisée à cause de la précipitation de la protéine purifiée. Ensuite, l'observation que E4 s'accumule dans les cellules ayant modifié leurs propriétés d'adhésion a suggéré que E4 pourrait être impliqué dans le procédé de différentiation des kératinocytes. Des résultats préliminaires supportent cette possibilité. Enfin, il a été montré que E4 pouvait induire une réorganisation du réseau des cytokératines. Une approche directe utilisant le microscope à force atomique nous a ainsi permis de tester une potentielle modification des propriétés mécaniques de cellules ayant modifié leur réseau de cytokératines en présence de E4. Si tel est le cas, un rôle dans la libération de particules virales peut être proposé pour E4.
Resumo:
Abstract Lipid derived signals mediate many stress and defense responses in multicellular eukaryotes. Among these are the jasmonates, potently active signaling compounds in plants. Jasmonic acid (JA) and 12-oxo-phytodienoic acid (OPDA) are the two best known members of the large jasmonate family. This thesis further investigates their roles as signals using genomic and proteomic approaches. The study is based on a simple genetic model involving two key genes. The first is ALLENE OXIDE SYNTHASE (AOS), encoding the most important enzyme in generating jasmonates. The second is CORONATINE INSENSITIVE 1 (COI1), a gene involved in all currently documented canonical signaling responses. We asked the simple question: do null mutations in AOS and COI1 have analogous effects on the transcriptome ? We found that they do not. If most COI1-dependent genes were also AOS-dependent, the expression of a zinc-finger protein was AOS-dependent but was unaffected by the coi1-1 mutation. We thus supposed that a jasmonate member, most probably OPDA, can alter gene expression partially independently of COI1. Conversely, the expression of at least three genes, one of these is a protein kinase, was shown to be COI1-dependent but did not require a functional AOS protein. We conclude that a non-jasmonate signal might alter gene expression through COIL Proteomic comparison of coi1-1 and aos plants confirmed these observations and highlighted probable protein degradation processes controlled by jasmonates and COI1 in the wounded leaf. This thesis revealed new functions for COI1 and for AOS-generated oxylipins in the jasmonate signaling pathway. Résumé Les signaux dérivés d'acides gras sont des médiateurs de réponses aux stress et de la défense des eucaryotes multicellulaires. Parmi eux, les jasmonates sont de puissants composés de sig¬nalisation chez les plantes. L'acide jasmonique (JA) et l'acide 12-oxo-phytodienoïc (OPDA) sont les deux membres les mieux caractérisés de la grande famille des jasmonates. Cette thèse étudie plus profondément leurs rôles de signalisation en utilisant des approches génomique et protéomique. Cette étude est basée sur un modèle génétique simple n'impliquant que deux gènes. Le premier est PALLENE OXYDE SYNTHASE (AOS) qui encode l'enzyme la plus importante pour la fabrication des jasmonates. Le deuxième est CORONATINE INSENSITIVE 1 (COI1) qui est impliqué dans la totalité des réponses aux jasmonates connues à ce jour. Nous avons posé la question suivante : est-ce que les mutations nulles dans les gènes AOS et COI1 ont des effets analogues sur le transcriptome ? Nous avons trouvé que ce n'était pas le cas. Si la majorité des gènes dépendants de COI1 sont également dépendants d'AOS, l'expression d'un gène codant pour une protéine formée de doigts de zinc n'est pas affectée par la mutation de COI1 tout en étant dépendante d'AOS. Nous avons donc supposé qu'un membre de la famille des jasmonates, probablement OPDA, pouvait modifier l'expression de certains gènes indépendamment de COI1. Inversement, nous avons montré que, tout en étant dépendante de COI1, l'expression d'au moins trois gènes, dont un codant pour une protéine kinase, n'était pas affectée par l'absence d'une protéine AOS fonctionnelle. Nous en avons conclu qu'un signal autre qu'un jasmonate devait modifier l'expression de certains gènes à travers COI1. La comparaison par protéomique de plantes aos et coi1-1 a confirmé ces observations et a mis en évidence un probable processus de dégradation de protéines contrôlé par les jasmonates et COU_ Cette thèse a mis en avant de nouvelles fonctions pour COI1 et pour des oxylipines générées par AOS dans le cadre de la signalisation par les jasmonates.
Resumo:
Background: During the last part of the 1990s the chance of surviving breast cancer increased. Changes in survival functions reflect a mixture of effects. Both, the introduction of adjuvant treatments and early screening with mammography played a role in the decline in mortality. Evaluating the contribution of these interventions using mathematical models requires survival functions before and after their introduction. Furthermore, required survival functions may be different by age groups and are related to disease stage at diagnosis. Sometimes detailed information is not available, as was the case for the region of Catalonia (Spain). Then one may derive the functions using information from other geographical areas. This work presents the methodology used to estimate age- and stage-specific Catalan breast cancer survival functions from scarce Catalan survival data by adapting the age- and stage-specific US functions. Methods: Cubic splines were used to smooth data and obtain continuous hazard rate functions. After, we fitted a Poisson model to derive hazard ratios. The model included time as a covariate. Then the hazard ratios were applied to US survival functions detailed by age and stage to obtain Catalan estimations. Results: We started estimating the hazard ratios for Catalonia versus the USA before and after the introduction of screening. The hazard ratios were then multiplied by the age- and stage-specific breast cancer hazard rates from the USA to obtain the Catalan hazard rates. We also compared breast cancer survival in Catalonia and the USA in two time periods, before cancer control interventions (USA 1975–79, Catalonia 1980–89) and after (USA and Catalonia 1990–2001). Survival in Catalonia in the 1980–89 period was worse than in the USA during 1975–79, but the differences disappeared in 1990–2001. Conclusion: Our results suggest that access to better treatments and quality of care contributed to large improvements in survival in Catalonia. On the other hand, we obtained detailed breast cancer survival functions that will be used for modeling the effect of screening and adjuvant treatments in Catalonia.
Resumo:
OBJECTIVE: To evaluate the variability of bond strength test results of adhesive systems (AS) and to correlate the results with clinical parameters of clinical studies investigating cervical restorations. MATERIALS AND METHODS: Regarding the clinical studies, the internal database which had previously been used for a meta-analysis on cervical restorations was updated with clinical studies published between 2008 and 2012 by searching the PubMed and SCOPUS databases. PubMed and the International Association for Dental Research abstracts online were searched for laboratory studies on microtensile, macrotensile and macroshear bond strength tests. The inclusion criteria were (1) dentin, (2) testing of at least four adhesive systems, (3) same diameter of composite and (4) 24h of water storage prior to testing. The clinical outcome variables were retention loss, marginal discoloration, detectable margins, and a clinical index comprising the three parameters by weighing them. Linear mixed models which included a random study effect were calculated for both, the laboratory and the clinical studies. The variability was assessed by calculating a ratio of variances, dividing the variance among the estimated bonding effects obtained in the linear mixed models by the sum of all variance components estimated in these models. RESULTS: Thirty-two laboratory studies fulfilled the inclusion criteria comprising 183 experiments. Of those, 86 used the microtensile test evaluating 22 adhesive systems (AS). Twenty-seven used the macrotensile test with 17 AS, and 70 used the macroshear test with 24 AS. For 28 AS the results from clinical studies were available. Microtensile and macrotensile (Spearman rho=0.66, p=0.007) were moderately correlated and also microtensile and macroshear (Spearman rho=0.51, p=0.03) but not macroshear and macrotensile (Spearman rho=0.34, p=0.22). The effect of the adhesive system was significant for microtensile and macroshear (p<0.001) but not for macrotensile. The effect of the adhesive system could explain 36% of the variability of the microtensile test, 27% of the macrotensile and 33% of the macroshear test. For the clinical trials, about 49% of the variability of retained restorations could be explained by the adhesive system. With respect to the correlation between bond strength tests and clinical parameters, only a moderate correlation between micro- and macrotensile test results and marginal discoloration was demonstrated. However, no correlation between these tests and a retention loss or marginal integrity was shown. The correlation improved when more studies were included compared to assessing only one study. SIGNIFICANCE: The high variability of bond strength test results highlights the need to establish individual acceptance levels for a given test institute. The weak correlation of bond-strength test results with clinical parameters leads to the conclusion that one should not rely solely on bond strength tests to predict the clinical performance of an adhesive system but one should conduct other laboratory tests like tests on the marginal adaptation of fillings in extracted teeth and the retention loss of restorations in non-retentive cavities after artificial aging.
Resumo:
The concept of conditional stability constant is extended to the competitive binding of small molecules to heterogeneous surfaces or macromolecules via the introduction of the conditional affinity spectrum (CAS). The CAS describes the distribution of effective binding energies experienced by one complexing agent at a fixed concentration of the rest. We show that, when the multicomponent system can be described in terms of an underlying affinity spectrum [integral equation (IE) approach], the system can always be characterized by means of a CAS. The thermodynamic properties of the CAS and its dependence on the concentration of the rest of components are discussed. In the context of metal/proton competition, analytical expressions for the mean (conditional average affinity) and the variance (conditional heterogeneity) of the CAS as functions of pH are reported and their physical interpretation discussed. Furthermore, we show that the dependence of the CAS variance on pH allows for the analytical determination of the correlation coefficient between the binding energies of the metal and the proton. Nonideal competitive adsorption isotherm and Frumkin isotherms are used to illustrate the results of this work. Finally, the possibility of using CAS when the IE approach does not apply (for instance, when multidentate binding is present) is explored. © 2006 American Institute of Physics.
Resumo:
The conversion of cellular prion protein (PrPc), a GPI-anchored protein, into a protease-K-resistant and infective form (generally termed PrPsc) is mainly responsible for Transmissible Spongiform Encephalopathies (TSEs), characterized by neuronal degeneration and progressive loss of basic brain functions. Although PrPc is expressed by a wide range of tissues throughout the body, the complete repertoire of its functions has not been fully determined. Recent studies have confirmed its participation in basic physiological processes such as cell proliferation and the regulation of cellular homeostasis. Other studies indicate that PrPc interacts with several molecules to activate signaling cascades with a high number of cellular effects. To determine PrPc functions, transgenic mouse models have been generated in the last decade. In particular, mice lacking specific domains of the PrPc protein have revealed the contribution of these domains to neurodegenerative processes. A dual role of PrPc has been shown, since most authors report protective roles for this protein while others describe pro-apoptotic functions. In this review, we summarize new findings on PrPc functions, especially those related to neural degeneration and cell signaling.
Resumo:
We study new supergravity solutions related to large-N c N=1 supersymmetric gauge field theories with a large number N f of massive flavors. We use a recently proposed framework based on configurations with N c color D5 branes and a distribution of N f flavor D5 branes, governed by a function N f S(r). Although the system admits many solutions, under plausible physical assumptions the relevant solution is uniquely determined for each value of x ≡ N f /N c . In the IR region, the solution smoothly approaches the deformed Maldacena-Núñez solution. In the UV region it approaches a linear dilaton solution. For x < 2 the gauge coupling β g function computed holographically is negative definite, in the UV approaching the NSVZ β function with anomalous dimension γ 0 = −1/2 (approaching − 3/(32π 2)(2N c − N f )g 3)), and with β g → −∞ in the IR. For x = 2, β g has a UV fixed point at strong coupling, suggesting the existence of an IR fixed point at a lower value of the coupling. We argue that the solutions with x > 2 describe a"Seiberg dual" picture where N f − 2N c flips sign.
Resumo:
We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.
Resumo:
Purpose: Wolfram syndrome is a degenerative, recessive rare disease with an onset in childhood. It is caused by mutations in WFS1 or CISD2 genes. More than 200 different variations in WFS1 have been described in patients with Wolfram syndrome, which complicates the establishment of clear genotype-phenotype correlation. The purpose of this study was to elucidate the role of WFS1 mutations and update the natural history of the disease. Methods: This study analyzed clinical and genetic data of 412 patients with Wolfram syndrome published in the last 15 years. Results: (i) 15% of published patients do not fulfill the current inclusion criterion; (ii) genotypic prevalence differences may exist among countries; (iii) diabetes mellitus and optic atrophy might not be the first two clinical features in some patients; (iv) mutations are nonuniformly distributed in WFS1; (v) age at onset of diabetes mellitus, hearing defects, and diabetes insipidus may depend on the patient"s genotypic class; and (vi) disease progression rate might depend on genotypic class. Conclusion: New genotype-phenotype correlations were established, disease progression rate for the general population and for the genotypic classes has been calculated, and new diagnostic criteria have been proposed. The conclusions raised could be important for patient management and counseling as well as for the development of treatments for Wolfram syndrome.
Resumo:
Water soluble perchlorinated trityl (PTM) radicals were found to be effective 95 GHz DNP (dynamic nuclear polarization) polarizers in ex situ (dissolution) 13C DNP (Gabellieri et al., Angew Chem., Int. Ed. 2010, 49, 3360). The degree of the nuclear polarization obtained was reported to be dependent on the position of the chlorine substituents on the trityl skeleton. In addition, on the basis of the DNP frequency sweeps it was suggested that the 13C NMR signal enhancement is mediated by the Cl nuclei. To understand the DNP mechanism of the PTM radicals we have explored the 95 GHz EPR characteristics of these radicals that are relevant to their performance as DNP polarizers. The EPR spectra of the radicals revealed axially symmetric g-tensors. A comparison of the spectra with the 13C DNP frequency sweeps showed that although the solid effect mechanism is operational the DNP frequency sweeps reveal some extra width suggesting that contributions from EPR forbidden transitions involving 35,37Cl nuclear flips are likely. This was substantiated experimentally by ELDOR (electron-electron double resonance) detected NMR measurements, which map the EPR forbidden transitions, and ELDOR experiments that follow the depolarization of the electron spin upon irradiation of the forbidden EPR transitions. DFT (density functional theory) calculations helped to assign the observed transitions and provided the relevant spin Hamiltonian parameters. These results show that the 35,37Cl hyperfine and nuclear quadrupolar interactions cause a considerable nuclear state mixing at 95 GHz thus facilitating the polarization of the Cl nuclei upon microwave irradiation. Overlap of Cl nuclear frequencies and the 13C Larmor frequency further facilitates the polarization of the 13C nuclei by spin diffusion. Calculation of the 13C DNP frequency sweep based on the Cl nuclear polarization showed that it does lead to an increase in the width of the spectra, improving the agreement with the experimental sweeps, thus supporting the existence of a new heteronuclear assisted DNP mechanism.
Resumo:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a multifunctional protein with defined functions in numerous mammalian cellular processes. GAPDH functional diversity depends on various factors such as covalent modifications, subcellular localization, oligomeric state and intracellular concentration of substrates or ligands, as well as protein-protein interactions. In bacteria, alternative GAPDH functions have been associated with its extracellular location in pathogens or probiotics. In this study, new intracellular functions of E. coli GAPDH were investigated following a proteomic approach aimed at identifying interacting partners using in vivo formaldehyde cross-linking followed by mass spectrometry. The identified proteins were involved in metabolic processes, protein synthesis and folding or DNA repair. Some interacting proteins were also identified in immunopurification experiments in the absence of cross-linking. Pull-down experiments and overlay immunoblotting were performed to further characterize the interaction with phosphoglycolate phosphatase (Gph). This enzyme is involved in the metabolism of 2-phosphoglycolate formed in the DNA repair of 3"-phosphoglycolate ends generated by bleomycin damage. We show that interaction between Gph and GAPDH increases in cells challenged with bleomycin, suggesting involvement of GAPDH in cellular processes linked to DNA repair mechanisms.
Resumo:
Extreme weight conditions (EWC) groups along a continuum may share some biological risk factors and intermediate neurocognitive phenotypes. A core cognitive trait in EWC appears to be executive dysfunction, with a focus on decision making, response inhibition and cognitive flexibility. Differences between individuals in these areas are likely to contribute to the differences in vulnerability to EWC. The aim of the study was to investigate whether there is a common pattern of executive dysfunction in EWC while comparing anorexia nervosa patients (AN), obese subjects (OB) and healthy eating/weight controls (HC).