960 resultados para Cooling semen
Resumo:
Using Monte Carlo simulations we study the dynamics of three-dimensional Ising models with nearest-, next-nearest-, and four-spin (plaquette) interactions. During coarsening, such models develop growing energy barriers, which leads to very slow dynamics at low temperature. As already reported, the model with only the plaquette interaction exhibits some of the features characteristic of ordinary glasses: strong metastability of the supercooled liquid, a weak increase of the characteristic length under cooling, stretched-exponential relaxation, and aging. The addition of two-spin interactions, in general, destroys such behavior: the liquid phase loses metastability and the slow-dynamics regime terminates well below the melting transition, which is presumably related with a certain corner-rounding transition. However, for a particular choice of interaction constants, when the ground state is strongly degenerate, our simulations suggest that the slow-dynamics regime extends up to the melting transition. The analysis of these models leads us to the conjecture that in the four-spin Ising model domain walls lose their tension at the glassy transition and that they are basically tensionless in the glassy phase.
Resumo:
Microstructural and magnetic measurements of the evolution by heat treatment of initially amorphous Nd16Fe76B8 alloys prepared by melt spinning are presented. Evidence of magnetic hardening above a threshold temperature induced by magnetic isolation of the Nd2Fe14B grains is provided. A thermodynamic and kinetic explanation of local melting of the intergranular nanostructured Nd¿rich eutectic phase at temperatures below 900 K based on capillary effects is presented. A subsequent Ostwald ripening process moves Nd to wet intimately the hard magnetic grains, becoming, on cooling, a real paramagnetic isolating thin film (~2.5 nm). By using a simple analogy, it is shown that the switching magnetization field in a single¿domain crystal can be drastically affected through the exchange coupling to neighboring grains with different orientation of the easy axis. This effect should be important enough to reinforce the coercive field of polycrystalline hard magnetic materials and explains the observed enhancement from 0.9 to 1.9 T.
Resumo:
Introduction: Clinical examination and electroencephalography study (EEG) have been recommended to predict functional recovery in comatose survivors of cardiac arrest (CA), however their prognostic value in patients treated with induced hypothermia (IH) has not been evaluated. Hypothesis: We aimed to validate the prognostic ability of clinical examination and EEG in predicting outcome of patients with coma after CA treated with IH and sought to derive a score with high predictive value for poor functional outcome in this setting. Methods: We prospectively studied 100 consecutive comatose survivors of CA treated with IH. Repeated neurological examination and EEG were performed early after passive rewarming and off sedation. Mortality was assessed at hospital discharge, and functional outcome at 3 to 6 months with Cerebral Performance Categories (CPC), and was dichotomized as good (CPC 1-2) vs. poor (CPC 3-5). Independent predictors of outcome were identified by multivariable logistic regression and used to assess the prognostic value of a Reproducible Electro-clinical Prognosticators of Outcome Score (REPOS). Results: Patients (20/100) with good outcome had all a reactive EEG background. Incomplete recovery of brainstem reflexes, myoclonus, time to return of spontaneous circulation (ROSC) > 25 min, and unreactive EEG background were all independent predictors of death and severe disability, and were added to construct the REPOS. Using a cut-off of 0 or 1 variables for good vs. 2 to 4 for poor outcome, the REPOS had a positive predictive value of 1.00 (95% CI: 0.92-1.00), a negative predictive value of 0.43 (95% CI: 0.29-0.58) and an accuracy of 0.81 for poor functional recovery at 3 to 6 months. Conclusions: In comatose survivors of CA treated with IH, a prognostic score, including clinical and EEG examination, was highly predictive of death and poor functional outcome at 3 to 6 months. Lack of EEG background reactivity strongly predicted poor neurological recovery after CA. Our findings show that clinical and electrophysiological studies are effective in predicting long-term outcome of comatose survivors after CA and IH, and suggest that EEG improves early prognostic assessment in the setting of therapeutic cooling.
Resumo:
High-precision isotope dilution - thermal ionization mass spectrometry (ID-TIMS) U-Pb zircon and baddeleyite ages from the PX1 vertically layered mafic intrusion Fuerteventura, Canary Islands, indicate initiation of magma crystallization at 22.10 +/- 0.07 Ma. The magmatic activity lasted a minimum of 0.52 Ma. Ar-40/Ar-39 amphibole dating yielded ages from 21.9 +/- 0.6 to 21.8 +/- 0.3, identical within errors to the U-Pb ages, despite the expected 1% theoretical bias between Ar-40/Ar-39 and U-Pb dates. This overlap could result from (i) rapid cooling of the intrusion (i. e., less than the 0.3 to 0.6 Ma 40Ar/39Ar age uncertainties) from closure temperatures (T-c) of zircon (699-988 degrees C) to amphibole (500-600 degrees C); (ii) lead loss affecting the youngest zircons; or (iii) excess argon shifting the plateau ages towards older values. The combination of the Ar-40/Ar-39 and U/Pb datasets implies that the maximum amount of time PX1 intrusion took to cool below amphibole T-c is 0.8 Ma, suggesting PX1 lifetime of 520 000 to 800 000 Ma. Age disparities among coexisting baddeleyite and zircon (22.10 +/- 0.07/0.08/0.15 Ma and 21.58 +/- 0.15/0.16/0.31 Ma) in a gabbro sample from the pluton margin suggest complex genetic relationships between phases. Baddeleyite is found preserved in plagioclase cores and crystallized early from low silica activity magma. Zircon crystallized later in a higher silica activity environment and is found in secondary scapolite and is found close to calcite veins, in secondary scapolite that recrystallised from plagioclase. close to calcite veins. Oxygen isotope delta O-18 values of altered plagioclase are high (+7.7), indicating interaction with fluids derived from host-rock carbonatites. The coexistence of baddeleyite and zircon is ascribed to interaction of the PX1 gabbro with CO2-rich carbonatite-derived fluids released during contact metamorphism.
Resumo:
The structure, magnetic response, and dielectric response of the grown epitaxial thin films of the orthorhombic phase of YMnO3 oxide on Nb:SrTiO3 (001) substrates have been measured. We have found that a substrate-induced strain produces an in-plane compression of the YMnO3 unit cell. The magnetization versus temperature curves display a significant zero-field cooling (ZFC)-field cooling hysteresis below the Nel temperature (TN 45 K). The dielectric constant increases gradually (up to 26%) below the TN and mimics the ZFC magnetization curve. We argue that these effects could be a manifestation of magnetoelectric coupling in YMnO3 thin films and that the magnetic structure of YMnO3 can be controlled by substrate selection and/or growth conditions.
Resumo:
BACKGROUND: Deep hypothermia has been associated with an increased incidence of postoperative neurologic dysfunction after cardiac surgery in children. Recent studies suggest an excitotoxic mechanism involving overstimulation of glutamate receptors. Extracellular glutamate uptake occurs primarily by astrocytes. Astrocytes also store glycogen, which may be used to sustain the energy-consuming glutamate uptake. Extracellular glutamate and glycogen content were studied during temperature changes mimicking cardiopulmonary bypass in vivo. METHODS: Primary cultures of cerebral cortical astrocytes were used in a specially designed incubator allowing continuous changes of temperature and ambient gas concentrations. The sequence of events was as follows: normothermia, rapid cooling (2.8 degrees C/min) followed by 60 min of deep hypothermia (15 degrees C), followed by rewarming (3.0 degrees C/min) and subsequent 5 h of mild hyperthermia (38.5 degrees C). Two different conditions of oxygenation were studied: (1) normoxia (25% O2, 70% N2, 5% CO2); or (2) hyperoxia (95% O2, 5% CO2). The extracellular glutamate concentrations and intracellular glycogen levels were measured at nine time points. RESULTS: One hundred sixty-two cultures were studied in four independent experiments. The extracellular concentration of glutamate in the normoxic group increased significantly from 35+/-10 nM/mg protein at baseline up to 100+/-15 nM/mg protein at the end of 5 h of mild hyperthermia (P < 0.05). In contrast, extracellular glutamate levels did not vary from control in the hyperoxic group. Glycogen levels decreased significantly from 260+/-85 nM/mg protein at baseline to < 25+/-5 nM/mg protein at the end of 5 h in the normoxic group (P < 0.05) but returned to control levels after rewarming in the hyperoxic group. No morphologic changes were observed in either group. CONCLUSION: The extracellular concentration of glutamate increases, whereas the intracellular glycogen content decreases when astrocytes are exposed to a sequence of deep hypothermia and rewarming. This effect of hypothermia is prevented when astrocytes are exposed to hyperoxic conditions.
Resumo:
BaFe10.4Co0.8Ti0.8O19 magnetic fine particles exhibit most of the features attributed to glassy behavior, e.g., irreversibility in the hysteresis loops and in the zero-field-cooling and field-cooling curves extends up to very high fields, and aging and magnetic training phenomena occur. However, the multivalley energy structure of the glassy state can be strongly modified by a field-cooling process at a moderate field. Slow relaxation experiments demonstrate that the intrinsic energy barriers of the individual particles dominate the behavior of the system at high cooling fields, while the energy states corresponding to collective glassy behavior play the dominant role at low cooling fields.
Resumo:
The synthesis of magnetic nanoparticles with monodispere size distributions, their self assembly into ordered arrays and their magnetic behavior as a function of structural order (ferrofluids and 2D assemblies) are presented. Magnetic colloids of monodispersed, passivated, cobalt nanocrystals were produced by the rapid pyrolysis of cobalt carbonyl in solution. The size, size distribution (std. dev.< 5%) and the shape of the nanocrystals were controlled by varying the surfactant, its concentration, the reaction rate and the reaction temperature. The Co particles are defect-free single crystals with a complex cubic structure related to the beta phase of manganese (epsilon-Co). In the 2D assembly, a collective behavior was observed in the low-field susceptibility measurements where the magnetization of the zero field cooled process increases steadily and the magnetization of the field cooling process is independent the temperature. This was different from the observed behavior in a sample comprised of disordered interacting particles. A strong paramagnetic contribution appears at very low temperatures where the magnetization increases drastically after field cooling the sample. This has been attributed to the Co surfactant-particle interface since no magnetic atomic impurities are present in these samples.
Resumo:
Exchange-biased Ni/FeF2 films have been investigated using vector coil vibrating-sample magnetometry as a function of the cooling field strength HFC . In films with epitaxial FeF2 , a loop bifurcation develops with increasing HFC as it divides into two sub-loops shifted oppositely from zero field by the same amount. The positively biased sub-loop grows in size with HFC until only a single positively shifted loop is found. Throughout this process, the negative and positive (sub)loop shifts maintain the same discrete value. This is in sharp contrast to films with twinned FeF2 where the exchange field gradually changes with increasing HFC . The transverse magnetization shows clear correlations with the longitudinal subloops. Interestingly, over 85% of the Ni reverses its magnetization by rotation, either in one step or through two successive rotations. These results are due to the single-crystal nature of the antiferromagnetic FeF2 , which breaks down into two opposite regions of large domains.
Resumo:
This guide describes things you can do around your home to reduce your utility bills and save you money. It offers some easy, practical steps that you can take to save energy and reduce the cost of heating and cooling your home. There are also tips on ways to reduce your electric and water usage. In addition, energy related health and safety information is also included. So, take a few minutes to read this guide and save it so you can refer to it in the future.
Resumo:
The average Iowa family spends more than half of its annual household energy bill on heating and cooling. That’s a significant number, but you can dramatically reduce these costs—up to 20 percent, according to ENERGY STAR®—by making some simple energy-saving weatherization and insulation improvements to your home. In addition—with a little attention to proper ventilation—you can protect your home from moisture damage year-round, reduce problems caused by ice dams on the roof during the winter and significantly cut summer cooling costs. As a bonus, these projects can extend the life of your home and may increase the resale value of your property. If you like to fix things around the house, you can handle many of the projects suggested in this book and make the most of your energy-improvement budget. However, don’t hesitate to call a professional for help if you’d rather not do the work yourself; the dollars gained through energy savings in upcoming years will be worth the expense.
Resumo:
Rationale: Clinical and electrophysiological prognostic markers of brain anoxia have been mostly evaluated in comatose survivors of out hospital cardiac arrest (OHCA) after standard resuscitation, but their predictive value in patients treated with mild induced hypothermia (IH) is unknown. The objective of this study was to identify a predictive score of independent clinical and electrophysiological variables in comatose OHCA survivors treated with IH, aiming at a maximal positive predictive value (PPV) and a high negative predictive value (NPV) for mortality. Methods: We prospectively studied consecutive adult comatose OHCA survivors from April 2006 to May 2009, treated with mild IH to 33-34_C for 24h at the intensive care unit of the Lausanne University Hospital, Switzerland. IH was applied using an external cooling method. As soon as subjects passively rewarmed (body temperature >35_C) they underwent EEG and SSEP recordings (off sedation), and were examined by experienced neurologists at least twice. Patients with status epilepticus were treated with AED for at least 24h. A multivariable logistic regression was performed to identify independent predictors of mortality at hospital discharge. These were used to formulate a predictive score. Results: 100 patients were studied; 61 died. Age, gender and OHCA etiology (cardiac vs. non-cardiac) did not differ among survivors and nonsurvivors. Cardiac arrest type (non-ventricular fibrillation vs. ventricular fibrillation), time to return of spontaneous circulation (ROSC) >25min, failure to recover all brainstem reflexes, extensor or no motor response to pain, myoclonus, presence of epileptiform discharges on EEG, EEG background unreactive to pain, and bilaterally absent N20 on SSEP, were all significantly associated with mortality. Absent N20 was the only variable showing no false positive results. Multivariable logistic regression identified four independent predictors (Table). These were used to construct the score, and its predictive values were calculated after a cut-off of 0-1 vs. 2-4 predictors. We found a PPV of 1.00 (95% CI: 0.93-1.00), a NPV of 0.81 (95% CI: 0.67-0.91) and an accuracy of 0.93 for mortality. Among 9 patients who were predicted to survive by the score but eventually died, only 1 had absent N20. Conclusions: Pending validation in a larger cohort, this simple score represents a promising tool to identify patients who will survive, and most subjects who will not, after OHCA and IH. Furthermore, while SSEP are 100% predictive of poor outcome but not available in most hospitals, this study identifies EEG background reactivity as an important predictor after OHCA. The score appears robust even without SSEP, suggesting that SSEP and other investigations (e.g., mismatch negativity, serum NSE) might be principally needed to enhance prognostication in the small subgroup of patients failing to improve despite a favorable score.
Resumo:
The Jurassic (approximately 145 Ma) Nambija oxidized gold skarns are hosted by the Triassic volcanosedimentary Piuntza unit in the sub-Andean zone of southeastern Ecuador. The skarns consist dominantly of granditic garnet (Ad(20-98)) with subordinate pyroxene (Di(46-92)Hd(17-42)Jo(0-19)) and epidote and are spatially associated with porphyritic quartz-diorite to granodiorite intrusions. Endoskarn is developed at the intrusion margins and grades inwards into a potassic alteration zone. Exoskarn has an outer K- and Na-enriched zone in the volcanosedimentary unit. Gold mineralization is associated with the weakly developed retrograde alteration of the exoskarn and occurs mainly in sulfide-poor vugs and milky quartz veins and veinlets in association with hematite. Fluid inclusion data for the main part of the prograde stage indicate the coexistence of high-temperature (500A degrees C to > 600A degrees C), high-salinity (up to 65 wt.% eq. NaCl), and moderate- to low-salinity aqueous-carbonic fluids interpreted to have been trapped at pressures around 100-120 MPa, corresponding to about 4-km depth. Lower-temperature (510-300A degrees C) and moderate- to low-salinity (23-2 wt.% eq. NaCl) aqueous fluids are recorded in garnet and epidote of the end of the prograde stage. The microthermometric data (Th from 513A degrees C to 318A degrees C and salinity from 1.0 to 23 wt.% eq. NaCl) and delta(18)O values between 6.2aEuro degrees and 11.5aEuro degrees for gold-bearing milky quartz from the retrograde stage suggest that the ore-forming fluid was dominantly magmatic. Pressures during the early retrograde stage were in the range of 50-100 MPa, in line with the evidence for CO(2) effervescence and probable local boiling. The dominance of magmatic low-saline to moderately saline oxidizing fluids during the retrograde stage is consistent with the depth of the skarn system, which could have delayed the ingression of external fluids until relatively low temperatures were reached. The resulting low water-to-rock ratios explain the weak retrograde alteration and the compositional variability of chlorite, essentially controlled by host rock compositions. Gold was precipitated at this stage as a result of cooling and pH increase related to CO(2) effervescence, which both result in destabilization of gold-bearing chloride complexes. Significant ingression of external fluids took place after gold deposition only, as recorded by delta(18)O values of 0.4aEuro degrees to 6.2aEuro degrees for fluids depositing quartz (below 350A degrees C) in sulfide-rich barren veins. Low-temperature (< 300A degrees C) meteoric fluids (delta(18)O(water) between -10.0aEuro degrees and -2.0aEuro degrees) are responsible for the precipitation of late comb quartz and calcite in cavities and veins and indicate mixing with cooler fluids of higher salinities (about 100A degrees C and 25 wt.% eq. NaCl). The latter are similar to low-temperature fluids (202-74.5A degrees C) with delta(18)O values of -0.5aEuro degrees to 3.1aEuro degrees and salinities in the range of 21.1 to 17.3 wt.% eq. CaCl(2), trapped in calcite of late veins and interpreted as basinal brines. Nambija represents a deep equivalent of the oxidized gold skarn class, the presence of CO(2) in the fluids being partly a consequence of the relatively deep setting at about 4-km depth. As in other Au-bearing skarn deposits, not only the prograde stage but also the gold-precipitating retrograde stage is dominated by fluids of magmatic origin.
Resumo:
Coevolution is among the main forces shaping the biodiversity on Earth. In Eurasia, one of the best-known plant-insect interactions showing highly coevolved features involves the fly genus Chiastocheta and its host-plant Trollius. Although this system has been widely studied from an ecological point of view, the phylogenetic relationships and biogeographic history of the flies have remained little investigated. In this integrative study, we aim to test the monophyly of the five Chiastocheta eco-morphological groups, defined by Pellmyr in 1992, by inferring a mitochondrial phylogeny. We further apply a new approach to assess the effect of (i) different molecular substitution rates and (ii) phylogenetic uncertainty on the inference of the spatio-temporal evolution of the group. From a taxonomic point of view, we demonstrate that only two of Pellmyr's groups (rotundiventris and dentifera) are phylogenetically supported, the other species appearing para- or polyphyletic. We also identify the position of C. lophota, which was not included in previous surveys. From a spatio-temporal perspective, we show that the genus arose during the Pliocene in Europe. Our results also indicate that at least four large-scale dispersal events are required to explain the current distribution of Chiastocheta. Moreover, each dispersal to or from Asia is associated with a host-shift and seems to correspond to an increase in speciation rates. Finally, we highlight the correlation between diversification and climatic fluctuations, which indicate that the cycles of global cooling over the last million years had an influence on the radiation of the group.
Resumo:
We propose a new terrane subdivision of Nicaragua and Northern Costa Rica, based on Upper Triassic to Upper Cretaceous radiolarian biochronology of ribbon radiolarites, the newly studied Siuna Serpentinite Mélange, and published 40Ar/39Ar dating and geochemistry of mafic and ultramafic igneous rock units of the area. The new Mesquito Composite Oceanic Terrane (MCOT) comprises the southern half of the Chortis Block, that was assumed to be a continental fragment of N-America. The MCOT is defined by 4 corner localities characterized by ultramafic and mafic oceanic rocks and radiolarites of Late Triassic, Jurassic and Early Cretaceous age: 1. The Siuna Serpentinite Mélange (NE-Nicaragua), 2. The El Castillo Mélange (Nicaragua/Costa Rica border), 3.The Santa Elena Ultramafics (N-Costa Rica) and, 4. DSDP Legs 67/84. 1. The Siuna Serpentinite Mélange contains, high pressure metamorphic mafics and Middle Jurassic (Bajocian-Bathonian) radiolarites in original, sedimentary contact with arc-metandesites. The Siuna Mélange also contains Upper Jurassic black detrital chert formed in a marginal (fore-arc?) basin shortly before subduction. A phengite 40Ar/39Ar -cooling age dates the exhumation of the high pressure rocks as 139 Ma (earliest Cretaceous). 2. The El Castillo Mélange comprises a radiolarite block tectonically embedded in serpentinite that yielded a diverse Rhaetian (latest Triassic) radiolarian assemblage, the oldest fossils recovered so far from S-Central America. 3. The Santa Elena Ultramafics of N-Costa Rica together with the serpentinite outcrops near El Castillo (2) in Southern Nicaragua, are the southernmost outcrops of the MCOT. The Santa Elena Unit (3) itself is still undated, but it is thrust onto the middle Cretaceous Santa Rosa Accretionary Complex (SRAC), that contains Lower to Upper Jurassic, highly deformed radiolarite blocks, probably reworked from the MCOT, which was the upper plate with respect to the SRAC. 4. Serpentinites, metagabbros and basalts have long been known from DSDP Leg 67/84 (3), drilled off Guatemala in the Nicaragua-Guatemala forearc basement. They have been restudied and reveal 40Ar/39Ar dated Upper Triassic to middle Cretaceous enriched Ocean Island Basalts and Jurassic to Lower Cretaceous depleted Island arc rocks of probable Pacific origin. The area between localities 1-4 is largely covered by Tertiary to Recent arcs, but we suspect that its basement is made of oceanic/accreted terranes. Earthquake seismic studies indicate an ill-defined, shallow Moho in this area. The MCOT covers most of Nicaragua and could extend to Guatemala to the W and form the Lower (southern) Nicaragua Rise to the NE. Some basement complexes of Jamaica, Hispaniola and Puerto Rico may also belong to the MCOT. The Nicoya Complex s. str. has been regarded as an example of Caribbean crust and the Caribbean Large Igneous Province (CLIP). However, 40Ar/39Ar - dates on basalts and intrusives indicate ages as old as Early Cretaceous. Highly deformed Jurassic and Lower Cretaceous radiolarites occur as blocks within younger intrusives and basalts. Our interpretation is that radiolarites became first accreted to the MCOT, then became reworked into the Nicoya Plateau in Late Cretaceous times. This implies that the Nicoya Plateau formed along the Pacific edge of the MCOT, independent form the CLIP and most probably unrelated with he Galapagos hotspot. No Jurassic radiolarite, no older sediment age than Coniacian-Santonian, and no older 40Ar/39Ar age than 95 Ma is known from S-Central America between SE of Nicoya and Colombia. For us this area represents the trailing edge of the CLIP s. str.