843 resultados para Continuous Maps


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, researches have shown that the performance of metaheuristics can be affected by population initialization. Opposition-based Differential Evolution (ODE), Quasi-Oppositional Differential Evolution (QODE), and Uniform-Quasi-Opposition Differential Evolution (UQODE) are three state-of-the-art methods that improve the performance of the Differential Evolution algorithm based on population initialization and different search strategies. In a different approach to achieve similar results, this paper presents a technique to discover promising regions in a continuous search-space of an optimization problem. Using machine-learning techniques, the algorithm named Smart Sampling (SS) finds regions with high possibility of containing a global optimum. Next, a metaheuristic can be initialized inside each region to find that optimum. SS and DE were combined (originating the SSDE algorithm) to evaluate our approach, and experiments were conducted in the same set of benchmark functions used by ODE, QODE and UQODE authors. Results have shown that the total number of function evaluations required by DE to reach the global optimum can be significantly reduced and that the success rate improves if SS is employed first. Such results are also in consonance with results from the literature, stating the importance of an adequate starting population. Moreover, SS presents better efficacy to find initial populations of superior quality when compared to the other three algorithms that employ oppositional learning. Finally and most important, the SS performance in finding promising regions is independent of the employed metaheuristic with which SS is combined, making SS suitable to improve the performance of a large variety of optimization techniques. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study uses several measures derived from the error matrix for comparing two thematic maps generated with the same sample set. The reference map was generated with all the sample elements and the map set as the model was generated without the two points detected as influential by the analysis of local influence diagnostics. The data analyzed refer to the wheat productivity in an agricultural area of 13.55 ha considering a sampling grid of 50 x 50 m comprising 50 georeferenced sample elements. The comparison measures derived from the error matrix indicated that despite some similarity on the maps, they are different. The difference between the estimated production by the reference map and the actual production was of 350 kilograms. The same difference calculated with the mode map was of 50 kilograms, indicating that the study of influential points is of fundamental importance to obtain a more reliable estimative and use of measures obtained from the error matrix is a good option to make comparisons between thematic maps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the coincidence theory of maps between two manifolds of the same dimension from an axiomatic viewpoint. First we look at coincidences of maps between manifolds where one of the maps is orientation true, and give a set of axioms such that characterizes the local index (which is an integer valued function). Then we consider coincidence theory for arbitrary pairs of maps between two manifolds. Similarly we provide a set of axioms which characterize the local index, which in this case is a function with values in Z circle plus Z(2). We also show in each setting that the group of values for the index (either Z or Z circle plus Z(2)) is determined by the axioms. Finally, for the general case of coincidence theory for arbitrary pairs of maps between two manifolds we provide a set of axioms which characterize the local Reidemeister trace which is an element of an abelian group which depends on the pair of functions. These results extend known results for coincidences between orientable differentiable manifolds. (C) 2012 Elsevier B.V. All rights reserved.