953 resultados para Constitutive metabolites


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous priority pollutants that tend to be trapped in aquatic sediments due to their high hydrophobicity. Nonetheless, the differential toxicological effects and mechanisms between the various classes of PAHs and their mixtures, as they invariably occur in the environment, are scarcely known, especially under ecologically-relevant scenarios. This thesis aimed at establishing a bridge between the study of mechanistic pathways and environmental monitoring of carcinogenic and non-carcinogenic PAHs, by introducing ecological-relevance in the research with model PAHs. A first bioassay conducted in situ with the mussel Mytilus edulis demonstrated that, dredging operations in harbours increase PAH bioavailability, eliciting genotoxicity, and showed that established environmental guidelines underestimate risk. Subsequent ex situ bioassays were performed with the carcinogenic benzo[b]fluoranthene (B[b]F) and non-carcinogenic phenantrene (Phe), selected following preceding results, and revealed that low-moderate concentrations of these PAHs in spiked sediments induce genotoxic effects to the clam Ruditapes decussatus, therefore contradicting the general notion that bivalves are less sensitive to PAHs than vertebrates due to inefficient bioactivation. Also, it was demonstrated that passive samplers permit inferring on PAH bioavailability but not on bioaccumulation or toxic effects. On the other hand, sea basses (Dicentrarchus labrax), yielded a complex pattern of effects and responses, relatively to genotoxicity, oxidative stress and production of specific metabolites, especially when exposed to mixtures of the PAHs which led to additive, if not synergistic, effects. It was shown that Phe may elicit significant genotoxicity especially in presence of B[b]F, even though the low, albeit realistic, exposure concentrations diluted dose- and time-independent relationships. The present work demonstrated that environmental quality guidelines underestimate the effects of PAHs in realistic scenarios and showed that the significant genotoxic and histopathological effects caused by mixed PAHs may not be reflected by oxidative stress- or CYP-related biomarkers. Besides important findings on the metabolism of PAH mixtures, the work calls for the need to re-evaluate the criteria for assessing risk and for the disclosure of more efficient indicators of toxicological hazard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: In venous ulcers, the presence of Staphylococcus aureus and coagulase-negative staphylococcus resistance phenotypes can aggravate and limit the choices for treatment. METHODS: Staphylococcus isolated from 69 patients (98 ulcers) between October of 2009 and October of 2010 were tested. The macrolide, lincosamide, streptogramin B (MLS B) group resistance phenotype detection was performed using the D-test. Isolates resistant to cefoxitin and/or oxacillin (disk-diffusion) were subjected to the confirmatory test to detect minimum inhibitory concentration (MIC), using oxacillin strips (E-test®). RESULTS: The prevalence of S. aureus was 83%, and 15% of coagulase-negative staphylococcus (CoNS). In addition were detected 28% of methicillin-resistant Staphylococcus aureus (MRSA) and 47% of methicillin-resistant coagulase-negative staphylococcus (MRCoNS). Among the S. aureus, 69.6% were resistant to erythromycin, 69.6% to clindamycin, 69.6% to gentamicin, and 100% to ciprofloxacin. Considering the MRSA, 74% were highly resistant to oxacillin, MIC ≥ 256µg/mL, and the MLS Bc constitutive resistance predominated in 65.2%. Among the 20 isolates sensitive to clindamycin, 12 presented an inducible MLS B phenotype. Of the MRCoNS, 71.4%were resistant to erythromycin, ciprofloxacin and gentamicin. Considering the isolates positive for β-lactamases, the MIC breakpoint was between 0.5 and 2µg/mL. CONCLUSIONS: The results point to a high occurrence of multi-drug resistant bacteria in venous ulcers in primary healthcare patients, thus evidencing the need for preventive measures to avoid outbreaks caused by multi-drug resistant pathogens, and the importance of healthcare professionals being able to identifying colonized versus infected venous ulcers as an essential criteria to implementing systemic antibacterial therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction The aim of this study was to explore the environment of Echinococcus granulosus (E. granulosus) protoscolices and their relationship with their host. Methods Proteins from the hydatid-cyst fluid (HCF) from E. granulosus were identified by proteomics. An inductively coupled plasma atomic emission spectrometer (ICP-AES) was used to determine the elements, an automatic biochemical analyzer was used to detect the types and levels of biochemical indices, and an automatic amino acid analyzer was used to detect the types and levels of amino acids in the E. granulosus HCF. Results I) Approximately 30 protein spots and 21 peptide mass fingerprints (PMF) were acquired in the two-dimensional gel electrophoresis (2-DE) pattern of hydatid fluid; II) We detected 10 chemical elements in the cyst fluid, including sodium, potassium, calcium, magnesium, copper, and zinc; III) We measured 19 biochemical metabolites in the cyst fluid, and the amount of most of these metabolites was lower than that in normal human serum; IV) We detected 17 free amino acids and measured some of these, including alanine, glycine, and valine. Conclusions We identified and measured many chemical components of the cyst fluid, providing a theoretical basis for developing new drugs to prevent and treat hydatid disease by inhibiting or blocking nutrition, metabolism, and other functions of the pathogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first part of this research work regards the assessment of the mathematical modelling of reinforced concrete columns confined with carbon fibre (CFRP) sheets under axial loading. The purpose was to evaluate existing analytical models, contribute to possible improvements and choose the best model(s) to be part of a new model for the prediction of the behaviour of confined columns under bending and compression. For circular columns, a wide group of authors have proposed several models specific for FRP-confined concrete. The analysis of some of the existing models was carried out by comparing these with several tested columns. Although several models predict fairly the peak load only few can properly estimate the load-strain and dilation behaviour of the columns. Square columns confined with CFRP show a more complex interpretation of their behaviour. Accordingly, the analysis of two experimental programs was carried out to propose new modelling equations for the whole behaviour of columns. The modelling results show that the analytical curves are in general agreement with the presented experimental curves for a wide range of dimensions. An analysis similar to the one done for circular columns was this turn carried out for square columns. Few models can fairly estimate the whole behaviour of the columns and with less accuracy at all levels when compared with circular columns. The second part of this study includes seven experimental tests carried out on reinforced concrete rectangular columns with rounded corners, different damage condition and with confinement and longitudinal strengthening systems. It was concluded that the use of CFRP confinement is viable and of effective performance enhancement alone and combined with other techniques, maintaining a good ductile behaviour for established threshold displacements. As regards the use of external longitudinal strengthening combined with CFRP confinement, this system is effective for the performance enhancement and viable in terms of execution. The load capacity was increased significantly, preserving also in this case a good ductile behaviour for threshold displacements. As to the numerical nonlinear modelling of the tested columns, the results show a variation of the peak load of 1% to 10% compared with tests results. The good results are partly due to the inclusion of the concrete constitutive model by Mander et al. modified by Faustino, Chastre & Paula taking into account the confinement effect. Despite the reasonable approximation to tests results, the modelling results showed higher unloading, which leads to an overestimate dissipated energy and residualdisplacement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Release of chloroethene compounds into the environment often results in groundwater contamination, which puts people at risk of exposure by drinking contaminated water. cDCE (cis-1,2-dichloroethene) accumulation on subsurface environments is a common environmental problem due to stagnation and partial degradation of other precursor chloroethene species. Polaromonas sp. strain JS666 apparently requires no exotic growth factors to be used as a bioaugmentation agent for aerobic cDCE degradation. Although being the only suitable microorganism found capable of such, further studies are needed for improving the intrinsic bioremediation rates and fully comprehend the metabolic processes involved. In order to do so, a metabolic model, iJS666, was reconstructed from genome annotation and available bibliographic data. FVA (Flux Variability Analysis) and FBA (Flux Balance Analysis) techniques were used to satisfactory validate the predictive capabilities of the iJS666 model. The iJS666 model was able to predict biomass growth for different previously tested conditions, allowed to design key experiments which should be done for further model improvement and, also, produced viable predictions for the use of biostimulant metabolites in the cDCE biodegradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyanobacteria are photoautotrophic microorganisms with great potential for the biotechnological industry due to their low nutrient requirements, photosynthetic capacities and metabolic plasticity. In biotechnology, the energy sector is one of the main targets for their utilization, especially to produce the so called third generation biofuels, which are regarded as one of the best replacements for petroleum-based fuels. Although, several issues could be solved, others arise from the use of cyanobacteria, namely the need for high amounts of freshwater and contamination/predation by other microorganisms that affect cultivation efficiencies. The cultivation of cyanobacteria in seawater could solve this issue, since it has a very stable and rich chemical composition. Among cyanobacteria, the model microorganism Synechocystis sp. PCC 6803 is one of the most studied with its genome fully sequenced and genomic, transcriptomic and proteomic data available to better predict its phenotypic behaviors/characteristics. Despite suitable for genetic engineering and implementation as a microbial cell factory, Synechocystis’ growth rate is negatively affected by increasing salinity levels. Therefore, it is important to improve. To achieve this, several strategies involving the constitutive overexpression of the native genes encoding the proteins involved in the production of the compatible solute glucosylglycerol were implemented, following synthetic biology principles. A preliminary transcription analysis of selected mutants revealed that the assembled synthetic devices are functional at the transcriptional level. However, under different salinities, the mutants did not show improved robustness to salinity in terms of growth, compared with the wild-type. Nevertheless, some mutants carrying synthetic devices appear to have a better physiological response under seawater’s NaCl concentration than in 0% (w/v) NaCl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present PhD thesis develops the cell functional enviromics (CFE) method to investigate the relationship between environment and cellular physiology. CFE may be defined as the envirome-wide cellular function reconstruction through the collection and systems-level analysis of dynamic envirome data. Throughout the thesis, CFE is illustrated by two main applications to cultures of a constitutive P. pastoris X33 strain expressing a scFv antibody fragment. The first application addresses the challenge of culture media development. A dataset was built from 26 shake flask experiments, with variations in trace elements concentrations and basal medium dilution based on the standard BSM+PTM1. Protein yield showed high sensitivity to culture medium variations, while biomass was essentially determined by BSM dilution. High scFv yield was associated with high overall metabolic fluxes through central carbon pathways concomitantly with a relative shift of carbon flux from biosynthetic towards energy-generating pathways. CFE identified three cellular functions (growth, energy generation and by-product formation) that together described 98.8% of the variance in observed fluxes. Analyses of how medium factors relate to identified cellular functions showed iron and manganese at concentrations close to PTM1 inhibit overall metabolic activity. The second application addresses bioreactor operation. Pilot 50 L fed-batch cultivations, followed by 1H-NMR exometabolite profiling, allowed the acquisition of data for 21 environmental factors over time. CFE identified five major metabolic pathway groups that are frequently activated by the environment. The resulting functional enviromics map may serve as template for future optimization of media composition and feeding strategies for Pichia pastoris. The present PhD thesis is a step forward towards establishing the foundations of CFE that is still at its infancy. The methods developed herein are a contribution for changing the culture media and process development paradigm towards a holistic and systematic discipline in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic Liquids (ILs) consist in organic salts that are liquid at/or near room temperature. Since ILs are entirely composed of ions, the formation of ion pairs is expected to be one essential feature for describing solvation in ILs. In recent years, protein - ionic liquid (P-IL) interactions have been the subject of intensive studies mainly because of their capability to promote folding/unfolding of proteins. However, the ion pairs and their lifetimes in ILs in P-IL thematic is dismissed, since the action of ILs is therefore the result of a subtle equilibrium between anion-cation interaction, ion-solvent and ion-protein interaction. The work developed in this thesis innovates in this thematic, once the design of ILs for protein stabilisation was bio-inspired in the high concentration of organic charged metabolites found in cell milieu. Although this perception is overlooked, those combined concentrations have been estimated to be ~300 mM among the macromolecules at concentrations exceeding 300 g/L (macromolecular crowding) and transient ion-pair can naturally occur with a potential specific biological role. Hence the main objective of this work is to develop new bio-ILs with a detectable ion-pair and understand its effects on protein structure and stability, under crowding environment, using advanced NMR techniques and calorimetric techniques. The choline-glutamate ([Ch][Glu]) IL was synthesized and characterized. The ion-pair was detected in water solutions using mainly the selective NOE NMR technique. Through the same technique, it was possible to detect a similar ion-pair promotion under synthetic and natural crowding environments. Using NMR spectroscopy (protein diffusion, HSQC experiments, and hydrogen-deuterium exchange) and differential scanning calorimetry (DSC), the model protein GB1 (production and purification in isotopic enrichment media) it was studied in the presence of [Ch][Glu] under macromolecular crowding conditions (PEG, BSA, lysozyme). Under dilute condition, it is possible to assert that the [Ch][Glu] induces a preferential hydration by weak and non-specific interactions, which leads to a significant stabilisation. On the other hand, under crowding environment, the [Ch][Glu] ion pair is promoted, destabilising the protein by favourable weak hydrophobic interactions , which disrupt the hydration layer of the protein. However, this capability can mitigates the effect of protein crowders. Overall, this work explored the ion-pair existence and its consequences on proteins in conditions similar to cell milieu. In this way, the charged metabolites found in cell can be understood as key for protein stabilisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the conversion process of a traditional Internal Combustion Engine vehicle into an Electric Vehicle. The main constitutive elements of the Electric Vehicle are presented. The developed powertrain uses a three-phase inverter with Field Oriented Control and space vector modulation. The developed on-board batteries charging system can operate in Grid-to-Vehicle and Vehicle-to-Grid modes. The implemented prototypes were tested, and experimental results are presented. The assembly of these prototypes in the vehicle was made in accordance with the Portuguese legislation about vehicles conversion, and the main adopted solutions are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corrosion of the steel reinforced concrete elements is one of the common pathologies that limits the long-term performance of urban infrastructures. This problem causes the loss of structural serviceability by decreasing the concrete-steel bond strength and reducing the cross section of the reinforcements. The present study introduces a new system for developing free-corrosion resistance prefabricated manhole covers for applications in the aggressive environments, i.e. wastewater collector systems, sewer systems, stormwater systems, etc. Fibre reinforced cement composites were applied in this system in order to suppress the corrodible steel mesh and maintain the structural ductility as well. Application of fibre reinforced polymer (FRP) system is adopted as the additional solution for increasing the load carrying capacity of these elements without concerns about corrosion. The effectiveness of the applied strategy in developing the manhole covers in terms of load carrying capacity and failure mode is evaluated in this research. Furthermore, this paper discusses a FEM-based simulation, aiming to address the possibility of calibrating the constitutive model parameters related to fracture modes I and II.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reinforcement mechanisms at the cross section level assured by fibres bridging the cracks in steel fibre reinforced self-compacting concrete (SFRSCC) can be significantly amplified at structural level when the SFRSCC is applied in structures with high support redundancy, such is the case of elevated slab systems. To evaluate the potentialities of SFRSCC as the fundamental material of elevated slab systems, a ¼ scale SFRSCC prototype of a residential building was designed, built and tested. The extensive experimental program includes material tests for characterizing the relevant properties of SFRSCC, as well as structural tests for assessing the performance of the prototype at serviceability and ultimate limit conditions. Three distinct approaches where adopted to derive the constitutive laws of the SFRSCC in tension that were used in finite element material nonlinear analysis to evaluate the reliability of these approaches in the prediction of the load carrying capacity of the prototype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High performance fiber reinforced concrete (HPFRC) is developing rapidly to a modern structural material with unique rheological and mechanical characteristics. Despite applying several methodologies to achieve self15 compacting requirements, some doubts still remain regarding the most convenient strategy for developing a HPFRC. In the present study, an innovative mix design method is proposed for the development of high17 performance concrete reinforced with a relatively high dosage of steel fibers. The material properties of the developed concrete are assessed, and the concrete structural behavior is characterized under compressive, flexural and shear loading. This study better clarifies the significant contribution of fibers for shear resistance of concrete elements. This paper further discusses a FEM-based simulation, aiming to address the possibility of calibrating the constitutive model parameters related to fracture modes I and II.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research is showing that the addition of Recycled Steel Fibres (RSF) from wasted tyres can decrease significantly the brittle behaviour of cement based materials, by improving its toughness and post-cracking resistance. In this sense, Recycled Steel Fibre Reinforced Concrete (RSFRC) seems to have the potential to constitute a sustainable material for structural and non-structural applications. To assess this potential, experimental and numerical research was performed on the use of RSFRC in elements failing in bending and in beams failing in shear. The values of the fracture mode I parameters of the developed RSFRC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To assess the possibility of using RSF as shear reinforcement in Reinforced Concrete (RC) beams, three point bending tests were executed with three series of RSFRC beams flexurally reinforced with a relatively high reinforcement ratio of longitudinal steel bars in order to assure shear failure for all the tested beams. By performing material nonlinear simulations with a computer program based on the finite element method (FEM), the applicability of the fracture mode I crack constitutive law derived from the inverse analysis is assessed for the prediction of the behaviour of these beams. The performance of the formulation proposed by RILEM TC 162 TDF and CEB-FIP 2010 for the prediction of the shear resistance of fibre reinforced concrete elements was also evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes a constitutive model to simulate nonlinear behaviour of cement based materials subjected to different loading paths. The model incorporates a multidirectional fixed smeared crack approach to simulate crack initiation and propagation, whereas the inelastic behaviour of material between cracks is treated by a numerical strategy that combines plasticity and damage theories. For capturing more realistically the shear stress transfer between the crack surfaces, a softening diagram is assumed for modelling the crack shear stress versus crack shear strain. The plastic damage model is based on the yield function, flow rule and evolution law for hardening variable, and includes an explicit isotropic damage law to simulate the stiffness degradation and the softening behaviour of cement based materials in compression. This model was implemented into the FEMIX computer program, and experimental tests at material scale were simulated to appraise the predictive performance of this constitutive model. The applicability of the model for simulating the behaviour of reinforced concrete shear wall panels submitted to biaxial loading conditions, and RC beams failing in shear is investigated.