966 resultados para Conjugate gradient methods
Resumo:
An a priori error analysis of discontinuous Galerkin methods for a general elliptic problem is derived under a mild elliptic regularity assumption on the solution. This is accomplished by using some techniques from a posteriori error analysis. The model problem is assumed to satisfy a GAyenrding type inequality. Optimal order L (2) norm a priori error estimates are derived for an adjoint consistent interior penalty method.
Resumo:
Six models (Simulators) are formulated and developed with all possible combinations of pressure and saturation of the phases as primary variables. A comparative study between six simulators with two numerical methods, conventional simultaneous and modified sequential methods are carried out. The results of the numerical models are compared with the laboratory experimental results to study the accuracy of the model especially in heterogeneous porous media. From the study it is observed that the simulator using pressure and saturation of the wetting fluid (PW, SW formulation) is the best among the models tested. Many simulators with nonwetting phase as one of the primary variables did not converge when used along with simultaneous method. Based on simulator 1 (PW, SW formulation), a comparison of different solution methods such as simultaneous method, modified sequential and adaptive solution modified sequential method are carried out on 4 test problems including heterogeneous and randomly heterogeneous problems. It is found that the modified sequential and adaptive solution modified sequential methods could save the memory by half and as also the CPU time required by these methods is very less when compared with that using simultaneous method. It is also found that the simulator with PNW and PW as the primary variable which had problem of convergence using the simultaneous method, converged using both the modified sequential method and also using adaptive solution modified sequential method. The present study indicates that pressure and saturation formulation along with adaptive solution modified sequential method is the best among the different simulators and methods tested.
Resumo:
In order to evaluate the influence of ambient aerosol particles on cloud formation, climate and human health, detailed information about the concentration and composition of ambient aerosol particles is needed. The dura-tion of aerosol formation, growth and removal processes in the atmosphere range from minutes to hours, which highlights the need for high-time-resolution data in order to understand the underlying processes. This thesis focuses on characterization of ambient levels, size distributions and sources of water-soluble organic carbon (WSOC) in ambient aerosols. The results show that in the location of this study typically 50-60 % of organic carbon in fine particles is water-soluble. The amount of WSOC was observed to increase as aerosols age, likely due to further oxidation of organic compounds. In the boreal region the main sources of WSOC were biomass burning during the winter and secondary aerosol formation during the summer. WSOC was mainly attributed to a fine particle mode between 0.1 - 1 μm, although different size distributions were measured for different sources. The WSOC concentrations and size distributions had a clear seasonal variation. Another main focus of this thesis was to test and further develop the high-time-resolution methods for chemical characterization of ambient aerosol particles. The concentrations of the main chemical components (ions, OC, EC) of ambient aerosol particles were measured online during a year-long intensive measurement campaign conducted on the SMEAR III station in Southern Finland. The results were compared to the results of traditional filter collections in order to study sampling artifacts and limitations related to each method. To achieve better a time resolution for the WSOC and ion measurements, a particle-into-liquid sampler (PILS) was coupled with a total organic carbon analyzer (TOC) and two ion chromatographs (IC). The PILS-TOC-IC provided important data about diurnal variations and short-time plumes, which cannot be resolved from the filter samples. In summary, the measurements made for this thesis provide new information on the concentrations, size distribu-tions and sources of WSOC in ambient aerosol particles in the boreal region. The analytical and collection me-thods needed for the online characterization of aerosol chemical composition were further developed in order to provide more reliable high-time-resolution measurements.
Resumo:
Non-Boussinesq conjugate natural convection in a vertical annulus with a centrally located vertical heat generating rod is studied numerically, taking into account variable transport properties. Results are presented for maximum solid temperatures, average Nusselt numbers and average pressure. In general, the Boussinesq model predicts higher temperatures in the solid and lower average Nusselt numbers on the inner and outer boundaries. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Positron emission tomography (PET) is a molecular imaging technique that utilises radiopharmaceuticals (radiotracers) labelled with a positron-emitting radionuclide, such as fluorine-18 (18F). Development of a new radiotracer requires an appropriate radiosynthesis method: the most common of which with 18F is nucleophilic substitution with [18F]fluoride ion. The success of the labelling reaction is dependent on various factors such as the reactivity of [18F]fluoride, the structure of the target compound in addition to the chosen solvent. The overall radiosynthesis procedure must be optimised in terms of radiochemical yield and quality of the final product. Therefore, both quantitative and qualitative radioanalytical methods are essential in developing radiosynthesis methods. Furthermore, biological properties of the tracer candidate need to be evaluated by various pre-clinical studies in animal models. In this work, the feasibility of various nucleophilic 18F-fluorination strategies were studied and a labelling method for a novel radiotracer, N-3-[18F]fluoropropyl-2beta-carbomethoxy-3beta-4-fluorophenyl)nortropane ([18F]beta-CFT-FP), was optimised. The effect of solvent was studied by labelling a series of model compounds, 4-(R1-methyl)benzyl R2-benzoates. 18F-Fluorination reactions were carried out both in polar aprotic and protic solvents (tertiary alcohols). Assessment of the 18F-fluorinated products was studied by mass spectrometry (MS) in addition to conventional radiochromatographic methods, using radiosynthesis of 4-[18F]fluoro-N-[2-[1-(2-methoxyphenyl)-1-piperazinyl]ethyl-N-2-pyridinyl-benzamide (p-[18F]MPPF) as a model reaction. Labelling of [18F]beta-CFT-FP was studied using two 18F-fluoroalkylation reagents, [18F]fluoropropyl bromide and [18F]fluoropropyl tosylate, as well as by direct 18F-fluorination of sulfonate ester precursor. Subsequently, the suitability of [18F]beta-CFT-FP for imaging dopamine transporter (DAT) was evaluated by determining its biodistribution in rats. The results showed that protic solvents can be useful co-solvents in aliphatic 18F-fluorinations, especially in the labelling of sulfonate esters. Aromatic 18F-fluorination was not promoted in tert-alcohols. Sensitivity of the ion trap MS was sufficient for the qualitative analysis of the 18F-labelled products; p-[18F]MPPF was identified from the isolated product fraction with a mass-to-charge (m/z) ratio of 435 (i.e. protonated molecule [M+H]+). [18F]beta-CFT-FP was produced most efficiently via [18F]fluoropropyl tosylate, leading to sufficient radiochemical yield and specific radioactivity for PET studies. The ex vivo studies in rats showed fast kinetics as well as the specific uptake of [18F]beta-CFT-FP to the DAT rich brain regions. Thus, it was concluded that [18F]beta-CFT-FP has potential as a radiotracer for imaging DAT by PET.
Resumo:
The temperature variation in the insulation around an electronic component, mounted on a horizontal circuit board is studied numerically. The flow is assumed to be laminar and fully developed. The effect of mixed convection and two different types of insulation are considered. The mass, momentum and energy conservation equations in the fluid and conduction equation in the insulation are solved using the SIMPLER algorithm. Computations are carried out for liquid Freon and water, for different conductivity ratios, and different Rayleigh numbers. It is demonstrated that the temperature variation within the insulation becomes important when the thermal conductivity of the insulation is less than ten times the thermal conductivity of the cooling medium.
Resumo:
Extensive measurements of columnar aerosol optical depth (AOD), composite (M-T) and black carbon aerosol mass (M-B) concentrations were made over the tropical Indian and Southern Oceans as a part of the Pilot Expedition to the Southern Ocean during the boreal winter. The AOD, M-T and M-B show large latitudinal gradient towards south up to ITCZ. Beyond ITCZ, up to 56 degrees S, AOD and M-B show very low and steady values. However M-T shows large variations in the Southern Ocean due to the enhanced production of sea salt aerosols associated with high sea surface winds. The short wave aerosol radiative forcing at the surface over north of equator is in the range - 10 to -23 W m(-2), whereas that over the Southern Ocean was in the range -4 to -5 W m(-2). The corresponding atmospheric forcing was in the range of 6-13 W m(-2) and 0.8-1.4 W m(-2). This large north south change in the aerosol radiative forcing has important implications to the meridional circulation and hence to climate.
Resumo:
The method proposed here considers the mean flow in the transition zone as a linear combination of the laminar and turbulent boundary layer in proportions determined by the transitional intermittency, the component flows being calculated by approximate integral methods. The intermittency distribution adopted takes into account the possibility of subtransitions within the zone in the presence of strong pressure gradients. A new nondimensional spot formation rate, whose value depends on the pressure gradient, is utilized to estimate the extent of the transition zone. Onset location is determined by a correlation that takes into account freestream turbulence and facility-specific residual disturbances in test data. Extensive comparisons with available experimental results in strong pressure gradients show that the proposed method performs at least as well as differential models, in many cases better, and is always faster.
Resumo:
The EMF of a solid-state cell, incorporating a composite solid-electrolyte with gradual variation in composition, and dissimilar gas electrodes, has been studied as a function of temperature and partial pressures at the electrodes. The cell with the configuration: Pt, CO2' + O2' parallel-to Na2CO3\Na(SO4)x(CO3)1-x\Na2SO4 parallel-to SO3'' + SO2'' + O2'', Pt x=0 x=1 was investigated in the temperature range 973 to 1079 K. The solid-electrolyte surface exposed to SO3 + SO2 + O2 gas mixture was doped-Na2SO4, whereas the CO2 + O2 gas mixture was in contact with pure Na2CO3. The composition of the solid solution between the carbonate and sulfate, with hexagonal structure, was varied gradually between the boundary values. It has been found that the EMF of the cell is close to that calculated from thermodynamic data, assuming unit transport number for Na+ ions. The gradient in the concentration of sulfate and carbonate ions in the electrolyte does not give rise to a significant diffusion potential.
Resumo:
NDDO-based (AM1) configuration interaction (CI) calculations have been used to calculate the wavelength and oscillator strengths of electronic absorptions in organic molecules and the results used in a sum-over-states treatment to calculate second-order-hyperpolarizabilities. The results for both spectra and hyperpolarizabilities are of acceptable quality as long as a suitable CI-expansion is used. We have found that using an active space of eight electrons in eight orbitals and including all single and pair-double excitations in the CI leads to results that agree well with experiment and that do not change significantly with increasing active space for most organic molecules. Calculated second-order hyperpolarizabilities using this type of CI within a sum-over-states calculation appear to be of useful accuracy.
Resumo:
Finite-state methods have been adopted widely in computational morphology and related linguistic applications. To enable efficient development of finite-state based linguistic descriptions, these methods should be a freely available resource for academic language research and the language technology industry. The following needs can be identified: (i) a registry that maps the existing approaches, implementations and descriptions, (ii) managing the incompatibilities of the existing tools, (iii) increasing synergy and complementary functionality of the tools, (iv) persistent availability of the tools used to manipulate the archived descriptions, (v) an archive for free finite-state based tools and linguistic descriptions. Addressing these challenges contributes to building a common research infrastructure for advanced language technology.
Resumo:
Graphenes with varying number of layers can be synthesized by using different strategies. Thus, single-layer graphene is prepared by micromechanical cleavage, reduction of single-layer graphene oxide, chemical vapor deposition and other methods. Few-layer graphenes are synthesized by conversion of nanodiamond, arc discharge of graphite and other methods. In this article, we briefly overview the various synthetic methods and the surface, magnetic and electrical properties of the produced graphenes. Few-layer graphenes exhibit ferromagnetic features along with antiferromagnetic properties, independent of the method of preparation. Aside from the data on electrical conductivity of graphenes and graphene-polymer composites, we also present the field-effect transistor characteristics of graphenes. Only single-layer reduced graphene oxide exhibits ambipolar properties. The interaction of electron donor and acceptor molecules with few-layer graphene samples is examined in detail.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants as well as well-known carcinogens. Therefore, it is important to develop an effective receptor for the detection and quantification of such molecules in solution. In view of this, a 1,3-dinaphthalimide derivative of calix4]arene (L) has been synthesized and characterized, and the structure has been established by single crystal XRD. In the crystal lattice, intermolecular arm-to-arm pi center dot center dot center dot pi overlap dominates and thus L becomes a promising receptor for providing interactions with the aromatic species in solution, which can be monitored by following the changes that occur in its fluorescence and absorption spectra. On the basis of the solution studies carried out with about 17 derivatives of the aromatic guest molecular systems, it may be concluded that the changes that occur in the fluorescence intensity seem to be proportional to the number of aromatic rings present and thus proportional to the extent of pi center dot center dot center dot pi interaction present between the naphthalimide moieties and the aromatic portion of the guest molecule. Though the nonaromatic portion of the guest species affects the fluorescence quenching, the trend is still based on the number of rings present in these. Four guest aldehydes are bound to L with K-ass of 2000-6000 M-1 and their minimum detection limit is in the range of 8-35 mu M. The crystal structure of a naphthaldehyde complex, L.2b, exhibits intermolecular arm-to-arm as well as arm-to-naphthaldehyde pi center dot center dot center dot pi interactions. Molecular dynamics studies of L carried out in the presence of aromatic aldehydes under vacuum as well as in acetonitrile resulted in exhibiting interactions observed in the solid state and hence the changes observed in the fluorescence and absorption spectra are attributable for such interactions. Complex formation has also been delineated through ESI MS studies. Thus L is a promising receptor that can recognize PAHs by providing spectral changes proportional to the aromatic conjugation of the guest and the extent of aromatic pi center dot center dot center dot pi interactions present between L and the guest.