928 resultados para Computer manikin
Resumo:
The binding of NO to iron is involved in the biological function of many heme proteins. Contrary to ligands like CO and O-2, which only bind to ferrous (Fe-II) iron, NO binds to both ferrous and ferric (Fe-II) iron. In a particular protein, the natural oxidation state can therefore be expected to be tailored to the required function. Herein, we present an ob initio potential-energy surface for ferric iron interacting with NO. This potential-energy surface exhibits three minima corresponding to eta'-NO coordination (the global minimum), eta(1)-ON coordination and eta(2) coordination. This contrasts with the potential-energy surface for Fe-II-NO, which ex- hibits only two minima (the eta(2) coordination mode for Fe-II is a transition state, not a minimum). In addition, the binding energies of NO are substantially larger for Fe-III than for Fe-II. We have performed molecular dynamics simulations for NO bound to ferric myoglobin (Mb(III)) and compare these with results obtained for Mb(II). Over the duration of our simulations (1.5 ns), all three binding modes are found to be stable at 200 K and transiently stable at 300 K, with eventual transformation to the eta(1)-NO global-minimum conformation. We discuss the implication of these results related to studies of rebinding processes in myoglobin.
Resumo:
Myoglobin has been studied in considerable detail using different experimental and computational techniques over the past decades. Recent developments in time-resolved spectroscopy have provided experimental data amenable to detailed atomistic simulations. The main theme of the present review are results on the structures, energetics and dynamics of ligands ( CO, NO) interacting with myoglobin from computer simulations. Modern computational methods including free energy simulations, mixed quantum mechanics/molecular mechanics simulations, and reactive molecular dynamics simulations provide insight into the dynamics of ligand dynamics in confined spaces complementary to experiment. Application of these methods to calculate and understand experimental observations for myoglobin interacting with CO and NO are presented and discussed.
Resumo:
Time correlation functions yield profound information about the dynamics of a physical system and hence are frequently calculated in computer simulations. For systems whose dynamics span a wide range of time, currently used methods require significant computer time and memory. In this paper, we discuss the multiple-tau correlator method for the efficient calculation of accurate time correlation functions on the fly during computer simulations. The multiple-tau correlator is efficacious in terms of computational requirements and can be tuned to the desired level of accuracy. Further, we derive estimates for the error arising from the use of the multiple-tau correlator and extend it for use in the calculation of mean-square particle displacements and dynamic structure factors. The method described here, in hardware implementation, is routinely used in light scattering experiments but has not yet found widespread use in computer simulations.
Resumo:
Routine computer tasks are often difficult for older adult computer users to learn and remember. People tend to learn new tasks by relating new concepts to existing knowledge. However, even for 'basic' computer tasks there is little, if any, existing knowledge on which older adults can base their learning. This paper investigates a custom file management interface that was designed to aid discovery and learnability by providing interface objects that are familiar to the user. A study was conducted which examined the differences between older and younger computer users when undertaking routine file management tasks using the standard Windows desktop as compared with the custom interface. Results showed that older adult computer users requested help more than ten times as often as younger users when using a standard windows/mouse configuration, made more mistakes and also required significantly more confirmations than younger users. The custom interface showed improvements over standard Windows/mouse, with fewer confirmations and less help being required. Hence, there is potential for an interface that closely mimics the real world to improve computer accessibility for older adults, aiding self-discovery and learnability.
Resumo:
The work reported in this paper is motivated towards handling single node failures for parallel summation algorithms in computer clusters. An agent based approach is proposed in which a task to be executed is decomposed to sub-tasks and mapped onto agents that traverse computing nodes. The agents intercommunicate across computing nodes to share information during the event of a predicted node failure. Two single node failure scenarios are considered. The Message Passing Interface is employed for implementing the proposed approach. Quantitative results obtained from experiments reveal that the agent based approach can handle failures more efficiently than traditional failure handling approaches.
Resumo:
An important goal in computational neuroanatomy is the complete and accurate simulation of neuronal morphology. We are developing computational tools to model three-dimensional dendritic structures based on sets of stochastic rules. This paper reports an extensive, quantitative anatomical characterization of simulated motoneurons and Purkinje cells. We used several local and global algorithms implemented in the L-Neuron and ArborVitae programs to generate sets of virtual neurons. Parameters statistics for all algorithms were measured from experimental data, thus providing a compact and consistent description of these morphological classes. We compared the emergent anatomical features of each group of virtual neurons with those of the experimental database in order to gain insights on the plausibility of the model assumptions, potential improvements to the algorithms, and non-trivial relations among morphological parameters. Algorithms mainly based on local constraints (e.g., branch diameter) were successful in reproducing many morphological properties of both motoneurons and Purkinje cells (e.g. total length, asymmetry, number of bifurcations). The addition of global constraints (e.g., trophic factors) improved the angle-dependent emergent characteristics (average Euclidean distance from the soma to the dendritic terminations, dendritic spread). Virtual neurons systematically displayed greater anatomical variability than real cells, suggesting the need for additional constraints in the models. For several emergent anatomical properties, a specific algorithm reproduced the experimental statistics better than the others did. However, relative performances were often reversed for different anatomical properties and/or morphological classes. Thus, combining the strengths of alternative generative models could lead to comprehensive algorithms for the complete and accurate simulation of dendritic morphology.
Resumo:
A vision system for recognizing rigid and articulated three-dimensional objects in two-dimensional images is described. Geometrical models are extracted from a commercial computer aided design package. The models are then augmented with appearance and functional information which improves the system's hypothesis generation, hypothesis verification, and pose refinement. Significant advantages over existing CAD-based vision systems, which utilize only information available in the CAD system, are realized. Examples show the system recognizing, locating, and tracking a variety of objects in a robot work-cell and in natural scenes.
Resumo:
This volume is based upon the 2nd IEEE European Workshop on Computer-Intensive Methods in Control and Signal Processing, held in Prague, August 1996.
Resumo:
Human-like computer interaction systems requires far more than just simple speech input/output. Such a system should communicate with the user verbally, using a conversational style language. It should be aware of its surroundings and use this context for any decisions it makes. As a synthetic character, it should have a computer generated human-like appearance. This, in turn, should be used to convey emotions, expressions and gestures. Finally, and perhaps most important of all, the system should interact with the user in real time, in a fluent and believable manner.
Resumo:
Presents a method for model based bilateral control of master-slave arm with time delay between master and slave arms, where the system supports cooperative action between manual and automatic modes. The method realises efficiencies in master-slave arm control with the simplicities of a computer and the flexibility of a skilled human operator.
Resumo:
This paper deals with the integration of radial basis function (RBF) networks into the industrial software control package Connoisseur. The paper shows the improved modelling capabilities offered by RBF networks within the Connoisseur environment compared to linear modelling techniques such as recursive least squares. The paper also goes on to mention the way this improved modelling capability, obtained through the RBF networks will be utilised within Connoisseur.