851 resultados para Computer input-output equipment.
Resumo:
The study of algorithms for active vibration control in smart structures is an area of interest, mainly due to the demand for better performance of mechanical systems, such as aircraft and aerospace structures. Smart structures, formed using actuators and sensors, can improve the dynamic performance with the application of several kinds of controllers. This article describes the application of a technique based on linear matrix inequalities (LMI) to design an active control system. The positioning of the actuators, the design of a robust state feedback controller and the design of an observer are all achieved using LMI. The following are considered in the controller design: limited actuator input, bounded output (energy) and robustness to parametric uncertainties. Active vibration control of a flat plate is chosen as an application example. The model is identified using experimental data by an eigensystem realization algorithm (ERA) and the placement of the two piezoelectric actuators and single sensor is determined using a finite element model (FEM) and an optimization procedure. A robust controller for active damping is designed using an LMI framework, and a reduced model with observation and control spillover effects is implemented using a computer. The simulation results demonstrate the efficacy of the approach, and show that the control system increases the damping in some of the modes.
Resumo:
This paper aims with the use of linear matrix inequalities approach (LMIs) for application in active vibration control problems in smart strutures. A robust controller for active damping in a panel was designed with piezoelectrical actuators in optimal locations for illustration of the main proposal. It was considered, in the simulations of the closed-loop, a model identified by eigensystem realization algorithm (ERA) and reduced by modal decomposition. We tested two differents techniques to solve the problem. The first one uses LMI approach by state-feedback based in an observer design, considering several simultaneous constraints as: a decay rate, limited input on the actuators, bounded output peak (output energy) and robustness to parametic uncertainties. The results demonstrated the vibration attenuation in the structure by controlling only the first modes and the increased damping in the bandwidth of interest. However, it is possible to occur spillover effects, because the design has not been done considering the dynamic uncertainties related with high frequencies modes. In this sense, the second technique uses the classical H. output feedback control, also solved by LMI approach, considering robustness to residual dynamic to overcome the problem found in the first test. The results are compared and discussed. The responses shown the robust performance of the system and the good reduction of the vibration level, without increase mass.
Resumo:
Despite the emergence of other forms of artificial lift, sucker rod pumping systems remains hegemonic because of its flexibility of operation and lower investment cost compared to other lifting techniques developed. A successful rod pumping sizing necessarily passes through the supply of estimated flow and the controlled wear of pumping equipment used in the mounted configuration. However, the mediation of these elements is particularly challenging, especially for most designers dealing with this work, which still lack the experience needed to get good projects pumping in time. Even with the existence of various computer applications on the market in order to facilitate this task, they must face a grueling process of trial and error until you get the most appropriate combination of equipment for installation in the well. This thesis proposes the creation of an expert system in the design of sucker rod pumping systems. Its mission is to guide a petroleum engineer in the task of selecting a range of equipment appropriate to the context provided by the characteristics of the oil that will be raised to the surface. Features such as the level of gas separation, presence of corrosive elements, possibility of production of sand and waxing are taken into account in selecting the pumping unit, sucker-rod strings and subsurface pump and their operation mode. It is able to approximate the inferente process in the way of human reasoning, which leads to results closer to those obtained by a specialist. For this, their production rules were based on the theory of fuzzy sets, able to model vague concepts typically present in human reasoning. The calculations of operating parameters of the pumping system are made by the API RP 11L method. Based on information input, the system is able to return to the user a set of pumping configurations that meet a given design flow, but without subjecting the selected equipment to an effort beyond that which can bear
Resumo:
Several runs of the BEAM4 model were carried out, combining several sets of input parameters from von Bertalanffy's growth curve (Lt = L-x[1 - e(-k(-to))]) and the natural mortality (M), with sets or parameters from the length-weight relationship (W=aL(b)). Further simulations were made with variations of +/- 20%, in the input parameters: recruitment (R), catchability coefficient (q), and the lengths at which 50 and 75% of the fishes are retained by the net (L-50%, and L-75%). The data used were those of the pair trawl fisheries for corvina Micropogonias furnieri, off southeastern Brazil. Results showed variations in the output (landed weight) ranging from - 62 to 147% associated with the diverse sets of VBGF and LWR parameters, and lower variations associated with the other input parameters tested. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Redes neurais pulsadas - redes que utilizam uma codificação temporal da informação - têm despontado como uma promissora abordagem dentro do paradigma conexionista, emergente da ciência cognitiva. Um desses novos modelos é a rede neural pulsada com função de base radial, que é capaz de armazenar informação nos tempos de atraso axonais dos neurônios. Um algoritmo de aprendizado foi aplicado com sucesso nesta rede pulsada, que se mostrou capaz de mapear uma seqüência de pulsos de entrada em uma seqüência de pulsos de saída. Mais recentemente, um método baseado no uso de campos receptivos gaussianos foi proposto para codificar dados constantes em uma seqüência de pulsos temporais. Este método tornou possível a essa rede lidar com dados computacionais. O processo de aprendizado desta nova rede não se encontra plenamente compreendido e investigações mais profundas são necessárias para situar este modelo dentro do contexto do aprendizado de máquinas e também para estabelecer as habilidades e limitações desta rede. Este trabalho apresenta uma investigação desse novo classificador e um estudo de sua capacidade de agrupar dados em três dimensões, particularmente procurando estabelecer seus domínios de aplicação e horizontes no campo da visão computacional.
Resumo:
A computer program, PhotoLin, written for an IBM-PC-compatible microcomputer is described which detects linear features in aerial photographs, satellite images and topographic maps. The program accepts images saved to PCX files as input and applies noise correction and smoothing filters and thinning routines. The output consists of a skeleton containing the median lines of linear features which can be represented on a map. The branches of the skeleton can be broken into sections of constant length for which the mean orientations are obtained for the preparation of rose diagrams. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Temporal and spatial acoustic intensity (SATA) of therapeutic ultrasound (US) equipment should be monitored periodically. In order to evaluate the conditions of US equipment in use in the city of Piracicaba-Sao Paulo, Brazil, 31 machines - representing all Brazilian manufacturers - were analysed under continuous and pulsed conditions at a frequency of 1 MHz. Data about temporal and spatial acoustic intensity were collected and the use of equipment was surveyed. Intensities of 0.1, 0.2, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0 Wcm -2, indicated on the equipment panel were analysed using a previously calibrated digital radiation pressure scale, model UPM-DT-1 (Ohmic Instruments Co). The acoustic intensity (I) results were expressed as superior and inferior quartile ranges for transducers with metal surfaces of 9 cm 2 and an effective radiation area (ERA) Of 4 cm 2. The results under continuous conditions were: I 0.1 = -20.0% and -96%. I 0.2 = -3.1% and -83.7%. I 0.5 = -35.0% and -86.5%. I 0.8 = -37.5% and -71.0%. I 2.5 = -49.0% and -69.5%. I 3.0 = -58.1% and -77.6%. For pulsed conditions, intensities were: I 0.1 = -40.0% and -86.2%. I 1.0 = -50.0% and -86.5%. I 1.5 = -62.5% and -82.5%. I 2.0 = -62.5% and -81.6%. I 2.5 = -64.7% and -88.8%. I 3.0 = -87.1% and -94.8%. In reply to the questionnaire drawn up to check the conditions of use of equipment, all users reported the use of hydrosoluble gel as a coupling medium and none had carried out previous calibrations. Most users used intensities in the range of 0.4. to 1.0 Wcm -2 and used machines for 300 to 400 minutes per week. The majority of machines had been bought during the previous seven years and weekly use ranged from less than 100 minutes to 700 minutes (11 hours 40 minutes). Findings confirm previous observations of discrepancy between the intensity indicated on the equipment panel and that emitted by the transducer and highlight the necessity for periodic evaluations of US equipment.
Resumo:
This paper describes a novel approach for mapping lightning models using artificial neural networks. The networks acts as identifier of structural features of the lightning models so that output parameters can be estimated and generalized from an input parameter set. Simulation examples are presented to validate the proposed approach. More specifically, the neural networks are used to compute electrical field intensity and critical disruptive voltage taking into account several atmospheric and structural factors, such as pressure, temperature, humidity, distance between phases, height of bus bars, and wave forms. A comparative analysis with other approaches is also provided to illustrate this new methodology.
Resumo:
A linearly-tunable ULV transconductor featuring excellent stability of the processed signal common-mode voltage upon tuning, critical for very-low voltage applications, is presented. Its employment to the synthesis of CMOS gm-C high-frequency and voiceband filters is discussed. SPICE data describe the filter characteristics. For a 1.3 V-supply, their nominal passband frequencies are 1.0 MHz and 3.78 KHz, respectively, with tuning rates of 12.52 KHz/mV and 0.16 KHz/m V, input-referred noise spectral density of 1.3 μV/Hz1/2 and 5.0μV/Hz1/2 and standby consumption of 0.87 mW and 11.8 μW. Large-signal distortion given by THD = 1% corresponds to a differential output-swing of 360 mVpp and 480 mVpp, respectively. Common-mode voltage deviation is less than 4 mV over tuning interval.
Resumo:
Relaxed conditions for the stability study of nonlinear, continuous and discrete-time systems given by fuzzy models are presented. A theoretical analysis shows that the proposed method provides better or at least the same results of the methods presented in the literature. Digital simulations exemplify this fact. These results are also used for the fuzzy regulators design. The nonlinear systems are represented by the fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers are described by LMIs (Linear Matrix Inequalities), that can be solved efficiently by convex programming techniques. The specification of the decay rate, constraints on control input and output are also described by LMIs. Finally, the proposed design method is applied in the control of an inverted pendulum.
Resumo:
A CMOS memory-cell for dynamic storage of analog data and suitable for LVLP applications is proposed. Information is memorized as the gate-voltage of input-transistor of a gain-boosting triode-transconductor. The enhanced output-resistance improves accuracy on reading out the sampled currents. Additionally, a four-quadrant multiplication between the input to regulation-amplifier of the transconductor and the stored voltage is provided. Designing complies with a low-voltage 1.2μm N-well CMOS fabrication process. For a 1.3V-supply, CCELL=3.6pF and sampling interval is 0.25μA≤ ISAMPLE ≤ 0.75μA. The specified retention time is 1.28ms and corresponds to a charge-variation of 1% due to junction leakage @75°C. A range of MR simulations confirm circuit performance. Absolute read-out error is below O.40% while the four-quadrant multiplier nonlinearity, at full-scale is 8.2%. Maximum stand-by consumption is 3.6μW/cell.