847 resultados para Computer control systems
Analytical modeling and sensitivity analysis for travel time estimation on signalized urban networks
Resumo:
This paper presents a model for estimation of average travel time and its variability on signalized urban networks using cumulative plots. The plots are generated based on the availability of data: a) case-D, for detector data only; b) case-DS, for detector data and signal timings; and c) case-DSS, for detector data, signal timings and saturation flow rate. The performance of the model for different degrees of saturation and different detector detection intervals is consistent for case-DSS and case-DS whereas, for case-D the performance is inconsistent. The sensitivity analysis of the model for case-D indicates that it is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.
Resumo:
This paper presents a methodology for estimation of average travel time on signalized urban networks by integrating cumulative plots and probe data. This integration aims to reduce the relative deviations in the cumulative plots due to midlink sources and sinks. During undersaturated traffic conditions, the concept of a virtual probe is introduced, and therefore, accurate travel time can be obtained when a real probe is unavailable. For oversaturated traffic conditions, only one probe per travel time estimation interval—360 s or 3% of vehicles traversing the link as a probe—has the potential to provide accurate travel time.
Resumo:
This paper presents a case study of a design for a complete microair vehicle thruster. Fixed-pitch small-scale rotors, brushless motors, lithium-polymer cells, and embedded control are combined to produce a mechanically simple, high-performance thruster with potentially high reliability. The custom rotor design requires a balance between manufacturing simplicity and rigidity of a blade versus its aerodynamic performance. An iterative steady-state aeroelastic simulator is used for holistic blade design. The aerodynamic load disturbances of the rotor-motor system in normal conditions are experimentally characterized. The motors require fast dynamic response for authoritative vehicle flight control. We detail a dynamic compensator that achieves satisfactory closed-loop response time. The experimental rotor-motor plant displayed satisfactory thrust performance and dynamic response.
Resumo:
Power system stabilizers (PSS) work well at the particular network configuration and steady state conditions for which they were designed. Once conditions change, their performance degrades. This can be overcome by an intelligent nonlinear PSS based on fuzzy logic. Such a fuzzy logic power system stabilizer (FLPSS) is developed, using speed and power deviation as inputs, and provides an auxiliary signal for the excitation system of a synchronous motor in a multimachine power system environment. The FLPSS's effect on the system damping is then compared with a conventional power system stabilizer's (CPSS) effect on the system. The results demonstrate an improved system performance with the FLPSS and also that the FLPSS is robust
Resumo:
The Mobile Emissions Assessment System for Urban and Regional Evaluation (MEASURE) model provides an external validation capability for hot stabilized option; the model is one of several new modal emissions models designed to predict hot stabilized emission rates for various motor vehicle groups as a function of the conditions under which the vehicles are operating. The validation of aggregate measurements, such as speed and acceleration profile, is performed on an independent data set using three statistical criteria. The MEASURE algorithms have proved to provide significant improvements in both average emission estimates and explanatory power over some earlier models for pollutants across almost every operating cycle tested.
Resumo:
This paper presents a continuous isotropic spherical omnidirectional drive mechanism that is efficient in its mechanical simplicity and use of volume. Spherical omnidirectional mechanisms allow isotropic motion, although many are limited from achieving true isotropic motion by practical mechanical design considerations. The mechanism presented in this paper uses a single motor to drive a point on the great circle of the sphere parallel to the ground plane, and does not require a gearbox. Three mechanisms located 120 degrees apart provide a stable drive platform for a mobile robot. Results show the omnidirectional ability of the robot and demonstrate the performance of the spherical mechanism compared to a popular commercial omnidirectional wheel over edges of varying heights and gaps of varying widths.
Resumo:
In this paper, we present the design and construction of a prototype target tracking system. The experimental set up consists of three main modules for moving the object, detecting the motion of the object and its tracking. The mechanism for moving the object includes an object and two stepper motors and their driving and control circuitry. The detection of the object’s motion is realized by photo switch array. The tracking mechanism consists of a laser beam and two DC servomotors and their associated circuitry. The control algorithm is a standard fuzzy logic controller. The system is designed to operate in two modes in such a way that the role of target and tracker can be interchanged. Experimental results indicate that the fuzzy controller is capable of controlling the system in both modes.