948 resultados para Computer Engineering|Computer science
Resumo:
Key distribution is one of the most challenging security issues in wireless sensor networks where sensor nodes are randomly scattered over a hostile territory. In such a sensor deployment scenario, there will be no prior knowledge of post deployment configuration. For security solutions requiring pairwise keys, it is impossible to decide how to distribute key pairs to sensor nodes before the deployment. Existing approaches to this problem are to assign more than one key, namely a key-chain, to each node. Key-chains are randomly drawn from a key-pool. Either two neighboring nodes have a key in common in their key-chains, or there is a path, called key-path, among these two nodes where each pair of neighboring nodes on this path has a key in common. Problem in such a solution is to decide on the key-chain size and key-pool size so that every pair of nodes can establish a session key directly or through a path with high probability. The size of the key-path is the key factor for the efficiency of the design. This paper presents novel, deterministic and hybrid approaches based on Combinatorial Design for key distribution. In particular, several block design techniques are considered for generating the key-chains and the key-pools.
Resumo:
Entity-oriented search has become an essential component of modern search engines. It focuses on retrieving a list of entities or information about the specific entities instead of documents. In this paper, we study the problem of finding entity related information, referred to as attribute-value pairs, that play a significant role in searching target entities. We propose a novel decomposition framework combining reduced relations and the discriminative model, Conditional Random Field (CRF), for automatically finding entity-related attribute-value pairs from free text documents. This decomposition framework allows us to locate potential text fragments and identify the hidden semantics, in the form of attribute-value pairs for user queries. Empirical analysis shows that the decomposition framework outperforms pattern-based approaches due to its capability of effective integration of syntactic and semantic features.
Resumo:
Chatrooms, for example Internet Relay Chat, are generally multi-user, multi-channel and multiserver chat-systems which run over the Internet and provide a protocol for real-time text-based conferencing between users all over the world. While a well-trained human observer is able to understand who is chatting with whom, there are no efficient and accurate automated tools to determine the groups of users conversing with each other. A precursor to analysing evolving cyber-social phenomena is to first determine what the conversations are and which groups of chatters are involved in each conversation. We consider this problem in this paper. We propose an algorithm to discover all groups of users that are engaged in conversation. Our algorithms are based on a statistical model of a chatroom that is founded on our experience with real chatrooms. Our approach does not require any semantic analysis of the conversations, rather it is based purely on the statistical information contained in the sequence of posts. We improve the accuracy by applying some graph algorithms to clean the statistical information. We present some experimental results which indicate that one can automatically determine the conversing groups in a chatroom, purely on the basis of statistical analysis.
Resumo:
This paper is concerned with the unsupervised learning of object representations by fusing visual and motor information. The problem is posed for a mobile robot that develops its representations as it incrementally gathers data. The scenario is problematic as the robot only has limited information at each time step with which it must generate and update its representations. Object representations are refined as multiple instances of sensory data are presented; however, it is uncertain whether two data instances are synonymous with the same object. This process can easily diverge from stability. The premise of the presented work is that a robot's motor information instigates successful generation of visual representations. An understanding of self-motion enables a prediction to be made before performing an action, resulting in a stronger belief of data association. The system is implemented as a data-driven partially observable semi-Markov decision process. Object representations are formed as the process's hidden states and are coordinated with motor commands through state transitions. Experiments show the prediction process is essential in enabling the unsupervised learning method to converge to a solution - improving precision and recall over using sensory data alone.
Resumo:
The challenge of persistent appearance-based navigation and mapping is to develop an autonomous robotic vision system that can simultaneously localize, map and navigate over the lifetime of the robot. However, the computation time and memory requirements of current appearance-based methods typically scale not only with the size of the environment but also with the operation time of the platform; also, repeated revisits to locations will develop multiple competing representations which reduce recall performance. In this paper we present a solution to the persistent localization, mapping and global path planning problem in the context of a delivery robot in an office environment over a one-week period. Using a graphical appearance-based SLAM algorithm, CAT-Graph, we demonstrate constant time and memory loop closure detection with minimal degradation during repeated revisits to locations, along with topological path planning that improves over time without using a global metric representation. We compare the localization performance of CAT-Graph to openFABMAP, an appearance-only SLAM algorithm, and the path planning performance to occupancy-grid based metric SLAM. We discuss the limitations of the algorithm with regard to environment change over time and illustrate how the topological graph representation can be coupled with local movement behaviors for persistent autonomous robot navigation.
Resumo:
Well-designed initialisation and keystream generation processes for stream ciphers should ensure that each key-IV pair generates a distinct keystream. In this paper, we analyse some ciphers where this does not happen due to state convergence occurring either during initialisation, keystream generation or both. We show how state convergence occurs in each case and identify two mechanisms which can cause state convergence.
Resumo:
Student performance on examinations is influenced by the level of difficulty of the questions. It seems reasonable to propose therefore that assessment of the difficulty of exam questions could be used to gauge the level of skills and knowledge expected at the end of a course. This paper reports the results of a study investigating the difficulty of exam questions using a subjective assessment of difficulty and a purpose-built exam question complexity classification scheme. The scheme, devised for exams in introductory programming courses, assesses the complexity of each question using six measures: external domain references, explicitness, linguistic complexity, conceptual complexity, length of code involved in the question and/or answer, and intellectual complexity (Bloom level). We apply the scheme to 20 introductory programming exam papers from five countries, and find substantial variation across the exams for all measures. Most exams include a mix of questions of low, medium, and high difficulty, although seven of the 20 have no questions of high difficulty. All of the complexity measures correlate with assessment of difficulty, indicating that the difficulty of an exam question relates to each of these more specific measures. We discuss the implications of these findings for the development of measures to assess learning standards in programming courses.
A qualitative think aloud study of the early Neo-Piagetian stages of reasoning in novice programmers
Resumo:
Recent research indicates that some of the difficulties faced by novice programmers are manifested very early in their learning. In this paper, we present data from think aloud studies that demonstrate the nature of those difficulties. In the think alouds, novices were required to complete short programming tasks which involved either hand executing ("tracing") a short piece of code, or writing a single sentence describing the purpose of the code. We interpret our think aloud data within a neo-Piagetian framework, demonstrating that some novices reason at the sensorimotor and preoperational stages, not at the higher concrete operational stage at which most instruction is implicitly targeted.
Resumo:
Climate change and land use pressures are making environmental monitoring increasingly important. As environmental health is degrading at an alarming rate, ecologists have tried to tackle the problem by monitoring the composition and condition of environment. However, traditional monitoring methods using experts are manual and expensive; to address this issue government organisations designed a simpler and faster surrogate-based assessment technique for consultants, landholders and ordinary citizens. However, it remains complex, subjective and error prone. This makes collected data difficult to interpret and compare. In this paper we describe a work-in-progress mobile application designed to address these shortcomings through the use of augmented reality and multimedia smartphone technology.
Resumo:
We are aware of global concerns of sustainability and are encouraged on many fronts to modify our behaviour to save the planet but sometimes this understanding is more intellectual than motivated. An opportunity was identified within the university environment to activate a pilot study to investigate the level of voluntary student engagement in saving energy if a plant/digital interface were introduced. We postulate that people may be more inclined to participate in a "green" activity if they are more directly aware of the benefits. This project also seeks to discover if the introduction of nature (green plants) as the interface would encourage users to increase participation in socially responsive activities. Using plants as the interface offers an immediate sensory connection between the participants and the outcome of their chosen actions. This may generate a deeper awareness of the environment by enabling the participant to realise that their one small action in an ordinary day can contribute positively to larger global issues.
Resumo:
In this paper we investigate the distribution of the product of Rayleigh distributed random variables. Considering the Mellin-Barnes inversion formula and using the saddle point approach we obtain an upper bound for the product distribution. The accuracy of this tail-approximation increases as the number of random variables in the product increase.
Resumo:
In order to obtain a more compact Superconducting Fault Current limiter (SFCL), a special geometry of core and AC coil is required. This results in a unique magnetic flux pattern which differs from those associated with conventional round core arrangements. In this paper the magnetic flux density within a Fault Current Limiter (FCL) is described. Both experimental and analytical approaches are considered. A small scale prototype of an FCL was constructed in order to conduct the experiments. This prototype comprises a single phase. The analysis covers both the steady state and the short-circuit condition. Simulation results were obtained using commercial software based on the Finite Element Method (FEM). The magnetic flux saturating the cores, leakage magnetic flux giving rise to electromagnetic forces and leakage magnetic flux flowing in the enclosing tank are computed.
Resumo:
Ocean gliders constitute an important advance in the highly demanding ocean monitoring scenario. Their effciency, endurance and increasing robustness make these vehicles an ideal observing platform for many long term oceanographic applications. However, they have proved to be also useful in the opportunis-tic short term characterization of dynamic structures. Among these, mesoscale eddies are of particular interest due to the relevance they have in many oceano-graphic processes.
Resumo:
Debugging control software for Micro Aerial Vehicles (MAV) can be risky out of the simulator, especially with professional drones that might harm people around or result in a high bill after a crash. We have designed a framework that enables a software application to communicate with multiple MAVs from a single unified interface. In this way, visual controllers can be first tested on a low-cost harmless MAV and, after safety is guaranteed, they can be moved to the production MAV at no additional cost. The framework is based on a distributed architecture over a network. This allows multiple configurations, like drone swarms or parallel processing of drones' video streams. Live tests have been performed and the results show comparatively low additional communication delays, while adding new functionalities and flexibility. This implementation is open-source and can be downloaded from github.com/uavster/mavwork
Resumo:
This paper proposes a concrete approach for the automatic mitigation of risks that are detected during process enactment. Given a process model exposed to risks, e.g. a financial process exposed to the risk of approval fraud, we enact this process and as soon as the likelihood of the associated risk(s) is no longer tolerable, we generate a set of possible mitigation actions to reduce the risks' likelihood, ideally annulling the risks altogether. A mitigation action is a sequence of controlled changes applied to the running process instance, taking into account a snapshot of the process resources and data, and the current status of the system in which the process is executed. These actions are proposed as recommendations to help process administrators mitigate process-related risks as soon as they arise. The approach has been implemented in the YAWL environment and its performance evaluated. The results show that it is possible to mitigate process-related risks within a few minutes.