977 resultados para Computation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach, the multipole theory (MT) method, is presented for the computation of cutoff wavenumbers of waveguides partially filled with dielectric. The MT formulation of the eigenvalue problem of an inhomogeneous waveguide is derived. Representative computational examples, including dielectric-rod-loaded rectangular and double-ridged waveguides, are given to validate the theory, and to demonstrate the degree of its efficiency

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis explores the outcome of the exhaustive theoretical and experimental investigations performed on Octagonal Microstrip Antenna configurations. Development of the MATLAB TM backed 3D-Conformal Finite Difference Time Domain (CFDTD)Modeller for the numerical computation of the radiation characteristics of the antenna is the theme of the work. The predicted results are verified experimentally and by IE3D TM simulation. The influence of the patch dimensions,feed configurations,feed dimensions and feed positions upon the radiation performance of the antenna is studied in detail. Octagonal Microstrip Antenna configurations suitable for Mobile-Bluetooth application is dealt in detail. A simple design formula for the regular Octagonal geometry is also presented. A compact planar multi band antenna for GPS/DCS/2.4/5.8GHz WLAN application is included as appendix A. Planar near field measurement technique is explained in appendix B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electromagnetic tomography has been applied to problems in nondestructive evolution, ground-penetrating radar, synthetic aperture radar, target identification, electrical well logging, medical imaging etc. The problem of electromagnetic tomography involves the estimation of cross sectional distribution dielectric permittivity, conductivity etc based on measurement of the scattered fields. The inverse scattering problem of electromagnetic imaging is highly non linear and ill posed, and is liable to get trapped in local minima. The iterative solution techniques employed for computing the inverse scattering problem of electromagnetic imaging are highly computation intensive. Thus the solution to electromagnetic imaging problem is beset with convergence and computational issues. The attempt of this thesis is to develop methods suitable for improving the convergence and reduce the total computations for tomographic imaging of two dimensional dielectric cylinders illuminated by TM polarized waves, where the scattering problem is defmed using scalar equations. A multi resolution frequency hopping approach was proposed as opposed to the conventional frequency hopping approach employed to image large inhomogeneous scatterers. The strategy was tested on both synthetic and experimental data and gave results that were better localized and also accelerated the iterative procedure employed for the imaging. A Degree of Symmetry formulation was introduced to locate the scatterer in the investigation domain when the scatterer cross section was circular. The investigation domain could thus be reduced which reduced the degrees of freedom of the inverse scattering process. Thus the entire measured scattered data was available for the optimization of fewer numbers of pixels. This resulted in better and more robust reconstructions of the scatterer cross sectional profile. The Degree of Symmetry formulation could also be applied to the practical problem of limited angle tomography, as in the case of a buried pipeline, where the ill posedness is much larger. The formulation was also tested using experimental data generated from an experimental setup that was designed. The experimental results confirmed the practical applicability of the formulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fourier transform methods are employed heavily in digital signal processing. Discrete Fourier Transform (DFT) is among the most commonly used digital signal transforms. The exponential kernel of the DFT has the properties of symmetry and periodicity. Fast Fourier Transform (FFT) methods for fast DFT computation exploit these kernel properties in different ways. In this thesis, an approach of grouping data on the basis of the corresponding phase of the exponential kernel of the DFT is exploited to introduce a new digital signal transform, named the M-dimensional Real Transform (MRT), for l-D and 2-D signals. The new transform is developed using number theoretic principles as regards its specific features. A few properties of the transform are explored, and an inverse transform presented. A fundamental assumption is that the size of the input signal be even. The transform computation involves only real additions. The MRT is an integer-to-integer transform. There are two kinds of redundancy, complete redundancy & derived redundancy, in MRT. Redundancy is analyzed and removed to arrive at a more compact version called the Unique MRT (UMRT). l-D UMRT is a non-expansive transform for all signal sizes, while the 2-D UMRT is non-expansive for signal sizes that are powers of 2. The 2-D UMRT is applied in image processing applications like image compression and orientation analysis. The MRT & UMRT, being general transforms, will find potential applications in various fields of signal and image processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis is the outcome of the exhaustive theoretical and experimental investigations performed on Printed Monopole Antennas loaded with different geometries .The work presented in this thesis describes the development of a 3D- FDTD(Finite Difference Time Domain) Modeller using MATLAB for the numerical computation of the radiation characteristics of the antenna. The predicted results are verified experimentally and also through simulation using Ansoft HFSS.The effect of top loading of the monopole with different geometries ,the dimensions of the loading patch and ground plane and the material parameters of the dielectric substrate upon the radiation performance of the antenna is studied in detail. Optimized Printed Monopole antennas suitable for Ultra Wide Band (UWB) applications have been developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, we explore the design, computation, and experimental analysis of photonic crystals, with a special emphasis on structures and devices that make a connection with practically realizable systems. First, we analyze the propenies of photonic-crystal: periodic dielectric structures that have a band gap for propagation. The band gap of periodically loaded air column on a dielectric substrate is computed using Eigen solvers in a plane wave basis. Then this idea is extended to planar filters and antennas at microwave regime. The main objectives covered in this thesis are:• Computation of Band Gap origin in Photonic crystal with the abet of Maxwell's equation and Bloch-Floquet's theorem • Extension of Band Gap to Planar structures at microwave regime • Predict the dielectric constant - synthesized dieletric cmstant of the substrates when loaded with Photonic Band Gap (PBG) structures in a microstrip transmission line • Identify the resonant characteristic of the PBG cell and extract the equivalent circuit based on PBG cell and substrate parameters for microstrip transmission line • Miniaturize PBG as Defected Ground Structures (DGS) and use the property to be implemented in planar filters with microstrip transmission line • Extended the band stop effect of PBG / DGS to coplanar waveguide and asymmetric coplanar waveguide. • Formulate design equations for the PBG / DGS filters • Use these PBG / DGS ground plane as ground plane of microstrip antennas • Analysis of filters and antennas using FDID method

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antennas are necessary and vital components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Reconfigurable antennas can adjust with changing system requirements or environmental conditions and provide additional levels of functionality that may result in wider instantaneous frequency bandwidths, more extensive scan volumes, and radiation patterns with more desirable side lobe distributions. Their agility and diversity created new horizons for different types of applications especially in cognitive radio, Multiple Input Multiple Output Systems, satellites and many other applications. Reconfigurable antennas satisfy the requirements for increased functionality, such as direction finding, beam steering, radar, control and command, within a confined volume. The intelligence associated with the reconfigurable antennas revolved around switching mechanisms utilized. In the present work, we have investigated frequency reconfigurable polarization diversity antennas using two methods: 1. By using low-loss, high-isolation switches such as PIN diode, the antenna can be structurally reconfigured to maintain the elements near their resonant dimensions for different frequency bands and/or polarization. 2. Secondly, the incorporation of variable capacitors or varactors, to overcome many problems faced in using switches and their biasing. The performances of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances. One of the major contributions of the thesis lies in the analysis of the designed antennas using FDTD based numerical computation to validate their performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis Entitled Investigations on Broadband planar Dipole Antennas. An antenna is a device ordinarily used for both transmitting and receiving electromagnetic energy. It is an integral part of the radio communication system and accounts for a good deal of progress that has been made in this field during the last few decades.The effect of flaring the dipole arms is studied in Section 4.1. It is observed that the flaring modifies the impedance characteristics of the dipole. In particular, the change in the reactive part of the impedance with frequency is controlled considerably. This improves the 2:1 VSWR bandwidth of the antenna. The effect of various other design parameters on the impedance bandwidth of the antenna are also studied. The important conclusion drawn is that, there is considerable improvement in the impedance bandwidth of the dipole when ground arm dimensions are larger than the main arm dimensions. Theoretical analysis of various cavity backed antennas are given in Chapter 6. The experimental values agree well with the computation. Also the theory gives a clear inside view and explains the reasons for bandwidth enhancement due to flaring and end-loading of the dipole arms. The percentage bandwidth is determined by calculating the Q of the antenna. Since the approach is for the analysis of microstrip antenna on thick grounded substrate, this method cannot be used to predict the impedance bandwidth of the antennas without cavity backup. Also, the structures analysed are simplified versions of the optimised ones. Specially, the arms overlapping is neglected in the analysis. Also, the antennas with symmetrical arms can only be analysed with this theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we have introduced and studied the notion of self interruption of service by customers. Service interruption in queueing systems have been extensively discussed in literature (see, Krishnamoorthy, Pramod and Chakravarthy [38]) for the most recent survey. So far all work reported deal with cases in which service interruptions are generated by sources other than customers. However, there are situations where interruptions are due to the customers rather than the system. Such situations are especially arise at doctors clinic, banks, reservation counter etc. Our attempt is to quantify a few of such problems. Systematically we have proceed from single server queue (in Chapter 2) to multi-server queues (Chapter 3). In Chapte 4, we have studied a very general multiserver queueing model with service interruption and protection of service phases. We also introduced customer interruption in a retrial setup (in Chapter 5). All models (from Chapter 2 to Chapter 4) that were analyzed involve 'non-preemptive priority' for interrupted customers where as in the model discussed in Chapter 5 interruption of service by customers is not encouraged. So the interrupted customers cannot access the server as long as there are primary customers in the system. In Chapter 5 we have obtained an explicit expression for the stability condition of the system. In all models analyzed in this thesis, we have assumed that no more than one interruption is allowed for a customer while in service. Since the models are not analytically tractable, a large number of numerical illustrations were given in each chapter it illustrate the working of the systems. We can extend the models discussed in this thesis to several directions. For example some of the models can be analyzed with both server induced and customer induced interruptions the results for which are not available till date. Another possible extension of work is to the case where there is no bound on the number of interruptions a customer is permitted to have before service completion. More complex is the case where a customer is permitted to have a nite number (K ≥ 2) of We can extend the models discussed in this thesis to several directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollutants that once enter into the earth’s atmosphere become part of the atmosphere and hence their dispersion, dilution, direction of transportation etc. are governed by the meteorological conditions. The thesis deals with the study of the atmospheric dispersion capacity, wind climatology, atmospheric stability, pollutant distribution by means of a model and the suggestions for a comprehensive planning for the industrially developing city, Cochin. The definition, sources, types and effects of air pollution have been dealt with briefly. The influence of various meteorological parameters such as vector wind, temperature and its vertical structure and atmospheric stability in relation to pollutant dispersal have been studied. The importance of inversions, mixing heights, ventilation coefficients were brought out. The spatial variation of mixing heights studies for the first time on a microscale region, serves to delineate the regions of good and poor dispersal capacity. A study of wind direction fluctuation, σθ and its relation to stability and mixing heights were shown to be much useful. It was shown that there is a necessity to look into the method of σθ computation. The development of Gausssian Plume Model along with the application for multiple sources was presented. The pollutant chosen was sulphur dioxide and industrial sources alone were considered. The percentage frequency of occurrence of inversions and isothermals are found to be low in all months during the year. The spatial variation of mixing heights revealed that a single mixing height cannot be taken as a representative for the whole city have low mixing heights and monsoonal months showed lowest mixing heights. The study of ventilation co-efficients showed values less than the required optimum value 6000m2/5. However, the low values may be due to the consideration of surface wind alone instead of the vertically averaged wind. Relatively more calm conditions and light winds during night and strong winds during day time were observed. During the most of the year westerlies during day time and northeasterlies during night time are the dominant winds. Unstable conditions with high values of σθ during day time and stable conditions with lower values of σθ during night time are the prominent features. Monsoonal months showed neutral stability for most of the time. A study σθ of and Pasquill Stability category has revealed the difficulty in giving a unique value of for each stability category. For the first time regression equations have been developed relating mixing heights and σθ. A closer examination of σθ revealed that half of the range of wind direction fluctuations is to be taken, instead of one by sixth, to compute σθ. The spatial distribution of SO2 showed a more or less uniform distribution with a slight intrusion towards south. Winter months showed low concentrations contrary to the expectations. The variations of the concentration is found to be influenced more by the mixing height and the stack height rather than wind speed. In the densely populated areas the concentration is more than the threshold limit value. However, the values reported appear to be high, because no depletion of the material is assumed through dry or wet depositions and also because of the inclusion of calm conditions with a very light wind speed. A reduction of emission during night time with a consequent rise during day time would bring down the levels of pollution. The probable locations for the new industries could be the extreme southeast parts because the concentration towards the north falls off very quickly resulting low concentrations. In such a case pollutant spread would be towards south and west, thus keeping the city interior relatively free from pollution. A more detailed examination of the pollutant spread by means of models that would take the dry and wet depositions may be necessary. Nevertheless, the present model serves to give the trend of the distribution of pollutant concentration with which one can suggest the optimum locations for the new industries

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of an investigation on the limits of the random errors contained in the basic data of Physical Oceanography and their propagation through the computational procedures are presented in this thesis. It also suggest a method which increases the reliability of the derived results. The thesis is presented in eight chapters including the introductory chapter. Chapter 2 discusses the general theory of errors that are relevant in the context of the propagation of errors in Physical Oceanographic computations. The error components contained in the independent oceanographic variables namely, temperature, salinity and depth are deliniated and quantified in chapter 3. Chapter 4 discusses and derives the magnitude of errors in the computation of the dependent oceanographic variables, density in situ, gt, specific volume and specific volume anomaly, due to the propagation of errors contained in the independent oceanographic variables. The errors propagated into the computed values of the derived quantities namely, dynamic depth and relative currents, have been estimated and presented chapter 5. Chapter 6 reviews the existing methods for the identification of level of no motion and suggests a method for the identification of a reliable zero reference level. Chapter 7 discusses the available methods for the extension of the zero reference level into shallow regions of the oceans and suggests a new method which is more reliable. A procedure of graphical smoothening of dynamic topographies between the error limits to provide more reliable results is also suggested in this chapter. Chapter 8 deals with the computation of the geostrophic current from these smoothened values of dynamic heights, with reference to the selected zero reference level. The summary and conclusion are also presented in this chapter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigates the potential use of zerocrossing information for speech sample estimation. It provides 21 new method tn) estimate speech samples using composite zerocrossings. A simple linear interpolation technique is developed for this purpose. By using this method the A/D converter can be avoided in a speech coder. The newly proposed zerocrossing sampling theory is supported with results of computer simulations using real speech data. The thesis also presents two methods for voiced/ unvoiced classification. One of these methods is based on a distance measure which is a function of short time zerocrossing rate and short time energy of the signal. The other one is based on the attractor dimension and entropy of the signal. Among these two methods the first one is simple and reguires only very few computations compared to the other. This method is used imtea later chapter to design an enhanced Adaptive Transform Coder. The later part of the thesis addresses a few problems in Adaptive Transform Coding and presents an improved ATC. Transform coefficient with maximum amplitude is considered as ‘side information’. This. enables more accurate tfiiz assignment enui step—size computation. A new bit reassignment scheme is also introduced in this work. Finally, sum ATC which applies switching between luiscrete Cosine Transform and Discrete Walsh-Hadamard Transform for voiced and unvoiced speech segments respectively is presented. Simulation results are provided to show the improved performance of the coder