934 resultados para Compressed Objects
Resumo:
Applications refactorings that imply the schema evolution are common activities in programming practices. Although modern object-oriented databases provide transparent schema evolution mechanisms, those refactorings continue to be time consuming tasks for programmers. In this paper we address this problem with a novel approach based on aspect-oriented programming and orthogonal persistence paradigms, as well as our meta-model. An overview of our framework is presented. This framework, a prototype based on that approach, provides applications with aspects of persistence and database evolution. It also provides a new pointcut/advice language that enables the modularization of the instance adaptation crosscutting concern of classes, which were subject to a schema evolution. We also present an application that relies on our framework. This application was developed without any concern regarding persistence and database evolution. However, its data is recovered in each execution, as well as objects, in previous schema versions, remain available, transparently, by means of our framework.
Resumo:
Trabalho de Projecto submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Teatro - especialização em Teatro e Comunidade
Resumo:
The extensional process affecting Iberia during the Triassic and Jurassic times change from the end of the Cretaceous and, throughout the Palaeocene, the displacement between the African and European plates was clearly convergent and part of the future Internal Zone of the Betic Cordillera was affected. To the west, the Atlantic continued to open as a passive margin and, to the north, no significant deformation occurred. During the Eocene, the entire Iberian plate was subjected to compression. which caused major deformations in the Pyrenees and also in the Alpujarride and Nevado-Filabride, Internal Betic, complexes. In the Oligocene continued this situation, but in addition, the new extensional process ocurring in the western Mediterranean area, together with the constant eastward drift of Iberia due to Atlantic opening, compressed the eastern sector of Iberia, giving rise to the structuring of the Iberian Cordillera. The Neogene was the time when the Betic Cordillera reached its fundamental features with the westward displacement of the Betic-Rif Internal Zone, expelled by the progressive opening of the Algerian Basin, opening prolonged till the Alboran Sea. From the late Miocene onwards, all Iberia was affected by a N-S to NNW-SSE compression, combined in many points by a near perpendicular extension. Specially in eastern and southern Iberia a radial extension superposed these compression and extension.
Resumo:
Earthquakes are associated with negative events, such as large number of casualties, destruction of buildings and infrastructures, or emergence of tsunamis. In this paper, we apply the Multidimensional Scaling (MDS) analysis to earthquake data. MDS is a set of techniques that produce spatial or geometric representations of complex objects, such that, objects perceived to be similar/distinct in some sense are placed nearby/distant on the MDS maps. The interpretation of the charts is based on the resulting clusters since MDS produces a different locus for each similarity measure. In this study, over three million seismic occurrences, covering the period from January 1, 1904 up to March 14, 2012 are analyzed. The events, characterized by their magnitude and spatiotemporal distributions, are divided into groups, either according to the Flinn–Engdahl seismic regions of Earth or using a rectangular grid based in latitude and longitude coordinates. Space-time and Space-frequency correlation indices are proposed to quantify the similarities among events. MDS has the advantage of avoiding sensitivity to the non-uniform spatial distribution of seismic data, resulting from poorly instrumented areas, and is well suited for accessing dynamics of complex systems. MDS maps are proven as an intuitive and useful visual representation of the complex relationships that are present among seismic events, which may not be perceived on traditional geographic maps. Therefore, MDS constitutes a valid alternative to classic visualization tools, for understanding the global behavior of earthquakes.
Resumo:
This essay aims to confront the literary text Wuthering Heights by Emily Brontë with five of its screen adaptations and Portuguese subtitles. Owing to the scope of the study, it will necessarily afford merely a bird‘s eye view of the issues and serve as a starting point for further research. Accordingly, the following questions are used as guidelines: What transformations occur in the process of adapting the original text to the screen? Do subtitles update the film dialogues to the target audience‘s cultural and linguistic context? Are subtitles influenced more by oral speech than by written literary discourse? Shouldn‘t subtitles in fact reflect the poetic function prevalent in screen adaptations of literary texts? Rather than attempt to answer these questions, we focus on the objects as phenomena. Our interdisciplinary undertaking clearly involves a semio-pragmatic stance, at this stage trying to avoid theoretical backdrops that may affect our apprehension of the objects as to their qualities, singularities, and conventional traits, based on Lucia Santaella‘s interpretation of Charles S. Peirce‘s phaneroscopy. From an empirical standpoint, we gather features and describe peculiarities, under the presumption that there are substrata in subtitling that point or should point to the literary source text, albeit through the mediation of a film script and a particular cinematic style. Therefore, we consider how the subtitling process may be influenced by the literary intertext, the idiosyncrasies of a particular film adaptation, as well as the socio-cultural context of the subtitler and target audience. First, we isolate one of the novel‘s most poignant scenes – ‗I am Heathcliff‘ – taking into account its symbolic play and significance in relation to character and plot construction. Secondly, we study American, English, French, and Mexican adaptations of the excerpt into film in terms of intersemiotic transformations. Then we analyze differences between the film dialogues and their Portuguese subtitles.
Resumo:
Taking as starting points the books The Address of the Eye: A Phenomenology of Film Experience, by Vivian Sobchak, and Les quatre concepts fondamentaux de la psychanalyse, by Jacques Lacan, this article proposes to look at two well renowned film objects – Rear Window (Alfred Hitchcock, 1954, USA) and Peeping Tom (Michael Powell, 1960, UK) – in order to equate two forms of perception that, all things considered, come together as one: the perception of the mechanical apparatuses that record and project film and the optical and mental apparatuses that operate on the human filmmakers as well as their intradiegetic protagonists. In fact, these two films not only explore the characteristics and limits of vision and affection in their diegetic world, that is part of the filmmaker’s world itself, but reveals just how much the human lives through the eye and the expression of the machine itself. Film ontology is foremost a matter of (re)production rather than creation.
Resumo:
As e-learning gradually evolved many specialized and disparate systems appeared to fulfil the needs of teachers and students, such as repositories of learning objects, authoring tools, intelligent tutors and automatic evaluators. This heterogeneity raises interoperability issues giving the standardization of content an important role in e-learning. This article presents a survey on current e-learning content aggregation standards focusing on their internal organization and packaging. This study is part of an effort to choose the most suitable specifications and standards for an e-learning framework called Ensemble defined as a conceptual tool to organize a network of e-learning systems and services for domains with complex evaluation.
Resumo:
Even though Software Transactional Memory (STM) is one of the most promising approaches to simplify concurrent programming, current STM implementations incur significant overheads that render them impractical for many real-sized programs. The key insight of this work is that we do not need to use the same costly barriers for all the memory managed by a real-sized application, if only a small fraction of the memory is under contention lightweight barriers may be used in this case. In this work, we propose a new solution based on an approach of adaptive object metadata (AOM) to promote the use of a fast path to access objects that are not under contention. We show that this approach is able to make the performance of an STM competitive with the best fine-grained lock-based approaches in some of the more challenging benchmarks. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
The application of mathematical methods and computer algorithms in the analysis of economic and financial data series aims to give empirical descriptions of the hidden relations between many complex or unknown variables and systems. This strategy overcomes the requirement for building models based on a set of ‘fundamental laws’, which is the paradigm for studying phenomena usual in physics and engineering. In spite of this shortcut, the fact is that financial series demonstrate to be hard to tackle, involving complex memory effects and a apparently chaotic behaviour. Several measures for describing these objects were adopted by market agents, but, due to their simplicity, they are not capable to cope with the diversity and complexity embedded in the data. Therefore, it is important to propose new measures that, on one hand, are highly interpretable by standard personal but, on the other hand, are capable of capturing a significant part of the dynamical effects.
Resumo:
Forest fires dynamics is often characterized by the absence of a characteristic length-scale, long range correlations in space and time, and long memory, which are features also associated with fractional order systems. In this paper a public domain forest fires catalogue, containing information of events for Portugal, covering the period from 1980 up to 2012, is tackled. The events are modelled as time series of Dirac impulses with amplitude proportional to the burnt area. The time series are viewed as the system output and are interpreted as a manifestation of the system dynamics. In the first phase we use the pseudo phase plane (PPP) technique to describe forest fires dynamics. In the second phase we use multidimensional scaling (MDS) visualization tools. The PPP allows the representation of forest fires dynamics in two-dimensional space, by taking time series representative of the phenomena. The MDS approach generates maps where objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to better understand forest fires behaviour.
Resumo:
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Resumo:
Hyperspectral imaging can be used for object detection and for discriminating between different objects based on their spectral characteristics. One of the main problems of hyperspectral data analysis is the presence of mixed pixels, due to the low spatial resolution of such images. This means that several spectrally pure signatures (endmembers) are combined into the same mixed pixel. Linear spectral unmixing follows an unsupervised approach which aims at inferring pure spectral signatures and their material fractions at each pixel of the scene. The huge data volumes acquired by such sensors put stringent requirements on processing and unmixing methods. This paper proposes an efficient implementation of a unsupervised linear unmixing method on GPUs using CUDA. The method finds the smallest simplex by solving a sequence of nonsmooth convex subproblems using variable splitting to obtain a constraint formulation, and then applying an augmented Lagrangian technique. The parallel implementation of SISAL presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory. The results herein presented indicate that the GPU implementation can significantly accelerate the method's execution over big datasets while maintaining the methods accuracy.
Resumo:
Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.
Resumo:
The Evidence Accumulation Clustering (EAC) paradigm is a clustering ensemble method which derives a consensus partition from a collection of base clusterings obtained using different algorithms. It collects from the partitions in the ensemble a set of pairwise observations about the co-occurrence of objects in a same cluster and it uses these co-occurrence statistics to derive a similarity matrix, referred to as co-association matrix. The Probabilistic Evidence Accumulation for Clustering Ensembles (PEACE) algorithm is a principled approach for the extraction of a consensus clustering from the observations encoded in the co-association matrix based on a probabilistic model for the co-association matrix parameterized by the unknown assignments of objects to clusters. In this paper we extend the PEACE algorithm by deriving a consensus solution according to a MAP approach with Dirichlet priors defined for the unknown probabilistic cluster assignments. In particular, we study the positive regularization effect of Dirichlet priors on the final consensus solution with both synthetic and real benchmark data.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Ramo de Sistemas Autónomos