922 resultados para Compositional data analysis-roots in geosciences
Resumo:
Groundwater systems of different densities are often mathematically modeled to understand and predict environmental behavior such as seawater intrusion or submarine groundwater discharge. Additional data collection may be justified if it will cost-effectively aid in reducing the uncertainty of a model's prediction. The collection of salinity, as well as, temperature data could aid in reducing predictive uncertainty in a variable-density model. However, before numerical models can be created, rigorous testing of the modeling code needs to be completed. This research documents the benchmark testing of a new modeling code, SEAWAT Version 4. The benchmark problems include various combinations of density-dependent flow resulting from variations in concentration and temperature. The verified code, SEAWAT, was then applied to two different hydrological analyses to explore the capacity of a variable-density model to guide data collection. ^ The first analysis tested a linear method to guide data collection by quantifying the contribution of different data types and locations toward reducing predictive uncertainty in a nonlinear variable-density flow and transport model. The relative contributions of temperature and concentration measurements, at different locations within a simulated carbonate platform, for predicting movement of the saltwater interface were assessed. Results from the method showed that concentration data had greater worth than temperature data in reducing predictive uncertainty in this case. Results also indicated that a linear method could be used to quantify data worth in a nonlinear model. ^ The second hydrological analysis utilized a model to identify the transient response of the salinity, temperature, age, and amount of submarine groundwater discharge to changes in tidal ocean stage, seasonal temperature variations, and different types of geology. The model was compared to multiple kinds of data to (1) calibrate and verify the model, and (2) explore the potential for the model to be used to guide the collection of data using techniques such as electromagnetic resistivity, thermal imagery, and seepage meters. Results indicated that the model can be used to give insight to submarine groundwater discharge and be used to guide data collection. ^
Resumo:
Women are a high-risk population for cardiovascular diseases (CVD); however relationships between CVD and subpopulations of mothers are sparse. A secondary data analysis of the 2006 Health Survey of Adults and Children in Bermuda was conducted to compare the prevalence of CVD risk factors in single (n=77) and partnered (n=241) mothers. A higher percentage of single mothers were Black (p25 kg/m2 (p=0.01) and reported high blood pressure (p=0.004) and high cholesterol (0.017). Single mothers were nearly three times (OR=2.66) more likely to experience high blood pressure and two times (OR= 2.22) more likely to have high cholesterol. Single mothers may benefit from nutrition education programs related to lowering CVD risk.
Resumo:
Constant technology advances have caused data explosion in recent years. Accord- ingly modern statistical and machine learning methods must be adapted to deal with complex and heterogeneous data types. This phenomenon is particularly true for an- alyzing biological data. For example DNA sequence data can be viewed as categorical variables with each nucleotide taking four different categories. The gene expression data, depending on the quantitative technology, could be continuous numbers or counts. With the advancement of high-throughput technology, the abundance of such data becomes unprecedentedly rich. Therefore efficient statistical approaches are crucial in this big data era.
Previous statistical methods for big data often aim to find low dimensional struc- tures in the observed data. For example in a factor analysis model a latent Gaussian distributed multivariate vector is assumed. With this assumption a factor model produces a low rank estimation of the covariance of the observed variables. Another example is the latent Dirichlet allocation model for documents. The mixture pro- portions of topics, represented by a Dirichlet distributed variable, is assumed. This dissertation proposes several novel extensions to the previous statistical methods that are developed to address challenges in big data. Those novel methods are applied in multiple real world applications including construction of condition specific gene co-expression networks, estimating shared topics among newsgroups, analysis of pro- moter sequences, analysis of political-economics risk data and estimating population structure from genotype data.
Resumo:
Background: Accurate estimates of the burden of diabetes are essential for future planning and evaluation of services. In Ireland, there is no diabetes register and prevalence estimates vary. The aim of this review was to systematically identify and review studies reporting the prevalence of diabetes and complications among adults in Ireland between 1998 and 2015 and to examine trends in prevalence over time. Methods: A systematic literature search was carried out using PubMed and Embase. Diabetes prevalence estimates were pooled by random-effects meta-analysis. Poisson regression was carried out using data from four nationally representative studies to calculate prevalence rates of doctor diagnosed diabetes between 1998 and 2015 and was also used to assess whether the rate of doctor diagnosed diabetes changed over time. Results: Fifteen studies (eight diabetes prevalence and seven complication prevalence) were eligible for inclusion. In adults aged 18 years and over, the national prevalence of doctor diagnosed diabetes significantly increased from 2.2 % in 1998 to 5.2 % in 2015 (p trend ≤ 0.001). The prevalence of diabetes complications ranged widely depending on study population and methodology used (6.5–25.2 % retinopathy; 3.2–32.0 % neuropathy; 2.5-5.2 % nephropathy). Conclusions: Between 1998 and 2015, there was a significant increase in the prevalence of doctor diagnosed diabetes among adults in Ireland. Trends in microvascular and macrovascular complications prevalence could not be examined due to heterogeneity between studies and the limited availability of data. Reliable baseline data are needed to monitor improvements in care over time at a national level. A comprehensive national diabetes register is urgently needed in Ireland.
Resumo:
Background There is increasing interest in how culture may affect the quality of healthcare services, and previous research has shown that ‘treatment culture’—of which there are three categories (resident centred, ambiguous and traditional)—in a nursing home may influence prescribing of psychoactive medications. Objective The objective of this study was to explore and understand treatment culture in prescribing of psychoactive medications for older people with dementia in nursing homes. Method Six nursing homes—two from each treatment culture category—participated in this study. Qualitative data were collected through semi-structured interviews with nursing home staff and general practitioners (GPs), which sought to determine participants’ views on prescribing and administration of psychoactive medication, and their understanding of treatment culture and its potential influence on prescribing of psychoactive drugs. Following verbatim transcription, the data were analysed and themes were identified, facilitated by NVivo and discussion within the research team. Results Interviews took place with five managers, seven nurses, 13 care assistants and two GPs. Four themes emerged: the characteristics of the setting, the characteristics of the individual, relationships and decision making. The characteristics of the setting were exemplified by views of the setting, daily routines and staff training. The characteristics of the individual were demonstrated by views on the personhood of residents and staff attitudes. Relationships varied between staff within and outside the home. These relationships appeared to influence decision making about prescribing of medications. The data analysis found that each home exhibited traits that were indicative of its respective assigned treatment culture. Conclusion Nursing home treatment culture appeared to be influenced by four main themes. Modification of these factors may lead to a shift in culture towards a more flexible, resident-centred culture and a reduction in prescribing and use of psychoactive medication.
Resumo:
In the last thirty years, the emergence and progression of biologging technology has led to great advances in marine predator ecology. Large databases of location and dive observations from biologging devices have been compiled for an increasing number of diving predator species (such as pinnipeds, sea turtles, seabirds and cetaceans), enabling complex questions about animal activity budgets and habitat use to be addressed. Central to answering these questions is our ability to correctly identify and quantify the frequency of essential behaviours, such as foraging. Despite technological advances that have increased the quality and resolution of location and dive data, accurately interpreting behaviour from such data remains a challenge, and analytical methods are only beginning to unlock the full potential of existing datasets. This review evaluates both traditional and emerging methods and presents a starting platform of options for future studies of marine predator foraging ecology, particularly from location and two-dimensional (time-depth) dive data. We outline the different devices and data types available, discuss the limitations and advantages of commonly-used analytical techniques, and highlight key areas for future research. We focus our review on pinnipeds - one of the most studied taxa of marine predators - but offer insights that will be applicable to other air-breathing marine predator tracking studies. We highlight that traditionally-used methods for inferring foraging from location and dive data, such as first-passage time and dive shape analysis, have important caveats and limitations depending on the nature of the data and the research question. We suggest that more holistic statistical techniques, such as state-space models, which can synthesise multiple track, dive and environmental metrics whilst simultaneously accounting for measurement error, offer more robust alternatives. Finally, we identify a need for more research to elucidate the role of physical oceanography, device effects, study animal selection, and developmental stages in predator behaviour and data interpretation.
Resumo:
Abstract and Summary of Thesis: Background: Individuals with Major Mental Illness (such as schizophrenia and bipolar disorder) experience increased rates of physical health comorbidity compared to the general population. They also experience inequalities in access to certain aspects of healthcare. This ultimately leads to premature mortality. Studies detailing patterns of physical health comorbidity are limited by their definitions of comorbidity, single disease approach to comorbidity and by the study of heterogeneous groups. To date the investigation of possible sources of healthcare inequalities experienced by individuals with Major Mental Illness (MMI) is relatively limited. Moreover studies detailing the extent of premature mortality experienced by individuals with MMI vary both in terms of the measure of premature mortality reported and age of the cohort investigated, limiting their generalisability to the wider population. Therefore local and national data can be used to describe patterns of physical health comorbidity, investigate possible reasons for health inequalities and describe mortality rates. These findings will extend existing work in this area. Aims and Objectives: To review the relevant literature regarding: patterns of physical health comorbidity, evidence for inequalities in physical healthcare and evidence for premature mortality for individuals with MMI. To examine the rates of physical health comorbidity in a large primary care database and to assess for evidence for inequalities in access to healthcare using both routine primary care prescribing data and incentivised national Quality and Outcome Framework (QOF) data. Finally to examine the rates of premature mortality in a local context with a particular focus on cause of death across the lifespan and effect of International Classification of Disease Version 10 (ICD 10) diagnosis and socioeconomic status on rates and cause of death. Methods: A narrative review of the literature surrounding patterns of physical health comorbidity, the evidence for inequalities in physical healthcare and premature mortality in MMI was undertaken. Rates of physical health comorbidity and multimorbidity in schizophrenia and bipolar disorder were examined using a large primary care dataset (Scottish Programme for Improving Clinical Effectiveness in Primary Care (SPICE)). Possible inequalities in access to healthcare were investigated by comparing patterns of prescribing in individuals with MMI and comorbid physical health conditions with prescribing rates in individuals with physical health conditions without MMI using SPICE data. Potential inequalities in access to health promotion advice (in the form of smoking cessation) and prescribing of Nicotine Replacement Therapy (NRT) were also investigated using SPICE data. Possible inequalities in access to incentivised primary healthcare were investigated using National Quality and Outcome Framework (QOF) data. Finally a pre-existing case register (Glasgow Psychosis Clinical Information System (PsyCIS)) was linked to Scottish Mortality data (available from the Scottish Government Website) to investigate rates and primary cause of death in individuals with MMI. Rate and primary cause of death were compared to the local population and impact of age, socioeconomic status and ICD 10 diagnosis (schizophrenia vs. bipolar disorder) were investigated. Results: Analysis of the SPICE data found that sixteen out of the thirty two common physical comorbidities assessed, occurred significantly more frequently in individuals with schizophrenia. In individuals with bipolar disorder fourteen occurred more frequently. The most prevalent chronic physical health conditions in individuals with schizophrenia and bipolar disorder were: viral hepatitis (Odds Ratios (OR) 3.99 95% Confidence Interval (CI) 2.82-5.64 and OR 5.90 95% CI 3.16-11.03 respectively), constipation (OR 3.24 95% CI 3.01-3.49 and OR 2.84 95% CI 2.47-3.26 respectively) and Parkinson’s disease (OR 3.07 95% CI 2.43-3.89 and OR 2.52 95% CI 1.60-3.97 respectively). Both groups had significantly increased rates of multimorbidity compared to controls: in the schizophrenia group OR for two comorbidities was 1.37 95% CI 1.29-1.45 and in the bipolar disorder group OR was 1.34 95% CI 1.20-1.49. In the studies investigating inequalities in access to healthcare there was evidence of: under-recording of cardiovascular-related conditions for example in individuals with schizophrenia: OR for Atrial Fibrillation (AF) was 0.62 95% CI 0.52 - 0.73, for hypertension 0.71 95% CI 0.67 - 0.76, for Coronary Heart Disease (CHD) 0.76 95% CI 0.69 - 0.83 and for peripheral vascular disease (PVD) 0.83 95% CI 0.72 - 0.97. Similarly in individuals with bipolar disorder OR for AF was 0.56 95% CI 0.41-0.78, for hypertension 0.69 95% CI 0.62 - 0.77 and for CHD 0.77 95% CI 0.66 - 0.91. There was also evidence of less intensive prescribing for individuals with schizophrenia and bipolar disorder who had comorbid hypertension and CHD compared to individuals with hypertension and CHD who did not have schizophrenia or bipolar disorder. Rate of prescribing of statins for individuals with schizophrenia and CHD occurred significantly less frequently than in individuals with CHD without MMI (OR 0.67 95% CI 0.56-0.80). Rates of prescribing of 2 or more anti-hypertensives were lower in individuals with CHD and schizophrenia and CHD and bipolar disorder compared to individuals with CHD without MMI (OR 0.66 95% CI 0.56-0.78 and OR 0.55 95% CI 0.46-0.67, respectively). Smoking was more common in individuals with MMI compared to individuals without MMI (OR 2.53 95% CI 2.44-2.63) and was particularly increased in men (OR 2.83 95% CI 2.68-2.98). Rates of ex-smoking and non-smoking were lower in individuals with MMI (OR 0.79 95% CI 0.75-0.83 and OR 0.50 95% CI 0.48-0.52 respectively). However recorded rates of smoking cessation advice in smokers with MMI were significantly lower than the recorded rates of smoking cessation advice in smokers with diabetes (88.7% vs. 98.0%, p<0.001), smokers with CHD (88.9% vs. 98.7%, p<0.001) and smokers with hypertension (88.3% vs. 98.5%, p<0.001) without MMI. The odds ratio of NRT prescription was also significantly lower in smokers with MMI without diabetes compared to smokers with diabetes without MMI (OR 0.75 95% CI 0.69-0.81). Similar findings were found for smokers with MMI without CHD compared to smokers with CHD without MMI (OR 0.34 95% CI 0.31-0.38) and smokers with MMI without hypertension compared to smokers with hypertension without MMI (OR 0.71 95% CI 0.66-0.76). At a national level, payment and population achievement rates for the recording of body mass index (BMI) in MMI was significantly lower than the payment and population achievement rates for BMI recording in diabetes throughout the whole of the UK combined: payment rate 92.7% (Inter Quartile Range (IQR) 89.3-95.8 vs. 95.5% IQR 93.3-97.2, p<0.001 and population achievement rate 84.0% IQR 76.3-90.0 vs. 92.5% IQR 89.7-94.9, p<0.001 and for each country individually: for example in Scotland payment rate was 94.0% IQR 91.4-97.2 vs. 96.3% IQR 94.3-97.8, p<0.001. Exception rate was significantly higher for the recording of BMI in MMI than the exception rate for BMI recording in diabetes for the UK combined: 7.4% IQR 3.3-15.9 vs. 2.3% IQR 0.9-4.7, p<0.001 and for each country individually. For example in Scotland exception rate in MMI was 11.8% IQR 5.4-19.3 compared to 3.5% IQR 1.9-6.1 in diabetes. Similar findings were found for Blood Pressure (BP) recording: across the whole of the UK payment and population achievement rates for BP recording in MMI were also significantly reduced compared to payment and population achievement rates for the recording of BP in chronic kidney disease (CKD): payment rate: 94.1% IQR 90.9-97.1 vs.97.8% IQR 96.3-98.9 and p<0.001 and population achievement rate 87.0% IQR 81.3-91.7 vs. 97.1% IQR 95.5-98.4, p<0.001. Exception rates again were significantly higher for the recording of BP in MMI compared to CKD (6.4% IQR 3.0-13.1 vs. 0.3% IQR 0.0-1.0, p<0.001). There was also evidence of differences in rates of recording of BMI and BP in MMI across the UK. BMI and BP recording in MMI were significantly lower in Scotland compared to England (BMI:-1.5% 99% CI -2.7 to -0.3%, p<0.001 and BP: -1.8% 99% CI -2.7 to -0.9%, p<0.001). While rates of BMI and BP recording in diabetes and CKD were similar in Scotland compared to England (BMI: -0.5 99% CI -1.0 to 0.05, p=0.004 and BP: 0.02 99% CI -0.2 to 0.3, p=0.797). Data from the PsyCIS cohort showed an increase in Standardised Mortality Ratios (SMR) across the lifespan for individuals with MMI compared to the local Glasgow and wider Scottish populations (Glasgow SMR 1.8 95% CI 1.6-2.0 and Scotland SMR 2.7 95% CI 2.4-3.1). Increasing socioeconomic deprivation was associated with an increased overall rate of death in MMI (350.3 deaths/10,000 population/5 years in the least deprived quintile compared to 794.6 deaths/10,000 population/5 years in the most deprived quintile). No significant difference in rate of death for individuals with schizophrenia compared with bipolar disorder was reported (6.3% vs. 4.9%, p=0.086), but primary cause of death varied: with higher rates of suicide in individuals with bipolar disorder (22.4% vs. 11.7%, p=0.04). Discussion: Local and national datasets can be used for epidemiological study to inform local practice and complement existing national and international studies. While the strengths of this thesis include the large data sets used and therefore their likely representativeness to the wider population, some limitations largely associated with using secondary data sources are acknowledged. While this thesis has confirmed evidence of increased physical health comorbidity and multimorbidity in individuals with MMI, it is likely that these findings represent a significant under reporting and likely under recognition of physical health comorbidity in this population. This is likely due to a combination of patient, health professional and healthcare system factors and requires further investigation. Moreover, evidence of inequality in access to healthcare in terms of: physical health promotion (namely smoking cessation advice), recording of physical health indices (BMI and BP), prescribing of medications for the treatment of physical illness and prescribing of NRT has been found at a national level. While significant premature mortality in individuals with MMI within a Scottish setting has been confirmed, more work is required to further detail and investigate the impact of socioeconomic deprivation on cause and rate of death in this population. It is clear that further education and training is required for all healthcare staff to improve the recognition, diagnosis and treatment of physical health problems in this population with the aim of addressing the significant premature mortality that is seen. Conclusions: Future work lies in the challenge of designing strategies to reduce health inequalities and narrow the gap in premature mortality reported in individuals with MMI. Models of care that allow a much more integrated approach to diagnosing, monitoring and treating both the physical and mental health of individuals with MMI, particularly in areas of social and economic deprivation may be helpful. Strategies to engage this “hard to reach” population also need to be developed. While greater integration of psychiatric services with primary care and with specialist medical services is clearly vital the evidence on how best to achieve this is limited. While the National Health Service (NHS) is currently undergoing major reform, attention needs to be paid to designing better ways to improve the current disconnect between primary and secondary care. This should then help to improve physical, psychological and social outcomes for individuals with MMI.
Resumo:
Cranial cruciate ligament (CCL) deficiency is the leading cause of lameness affecting the stifle joints of large breed dogs, especially Labrador Retrievers. Although CCL disease has been studied extensively, its exact pathogenesis and the primary cause leading to CCL rupture remain controversial. However, weakening secondary to repetitive microtrauma is currently believed to cause the majority of CCL instabilities diagnosed in dogs. Techniques of gait analysis have become the most productive tools to investigate normal and pathological gait in human and veterinary subjects. The inverse dynamics analysis approach models the limb as a series of connected linkages and integrates morphometric data to yield information about the net joint moment, patterns of muscle power and joint reaction forces. The results of these studies have greatly advanced our understanding of the pathogenesis of joint diseases in humans. A muscular imbalance between the hamstring and quadriceps muscles has been suggested as a cause for anterior cruciate ligament rupture in female athletes. Based on these findings, neuromuscular training programs leading to a relative risk reduction of up to 80% has been designed. In spite of the cost and morbidity associated with CCL disease and its management, very few studies have focused on the inverse dynamics gait analysis of this condition in dogs. The general goals of this research were (1) to further define gait mechanism in Labrador Retrievers with and without CCL-deficiency, (2) to identify individual dogs that are susceptible to CCL disease, and (3) to characterize their gait. The mass, location of the center of mass (COM), and mass moment of inertia of hind limb segments were calculated using a noninvasive method based on computerized tomography of normal and CCL-deficient Labrador Retrievers. Regression models were developed to determine predictive equations to estimate body segment parameters on the basis of simple morphometric measurements, providing a basis for nonterminal studies of inverse dynamics of the hind limbs in Labrador Retrievers. Kinematic, ground reaction forces (GRF) and morphometric data were combined in an inverse dynamics approach to compute hock, stifle and hip net moments, powers and joint reaction forces (JRF) while trotting in normal, CCL-deficient or sound contralateral limbs. Reductions in joint moment, power, and loads observed in CCL-deficient limbs were interpreted as modifications adopted to reduce or avoid painful mobilization of the injured stifle joint. Lameness resulting from CCL disease affected predominantly reaction forces during the braking phase and the extension during push-off. Kinetics also identified a greater joint moment and power of the contralateral limbs compared with normal, particularly of the stifle extensor muscles group, which may correlate with the lameness observed, but also with the predisposition of contralateral limbs to CCL deficiency in dogs. For the first time, surface EMG patterns of major hind limb muscles during trotting gait of healthy Labrador Retrievers were characterized and compared with kinetic and kinematic data of the stifle joint. The use of surface EMG highlighted the co-contraction patterns of the muscles around the stifle joint, which were documented during transition periods between flexion and extension of the joint, but also during the flexion observed in the weight bearing phase. Identification of possible differences in EMG activation characteristics between healthy patients and dogs with or predisposed to orthopedic and neurological disease may help understanding the neuromuscular abnormality and gait mechanics of such disorders in the future. Conformation parameters, obtained from femoral and tibial radiographs, hind limb CT images, and dual-energy X-ray absorptiometry, of hind limbs predisposed to CCL deficiency were compared with the conformation parameters from hind limbs at low risk. A combination of tibial plateau angle and femoral anteversion angle measured on radiographs was determined optimal for discriminating predisposed and non-predisposed limbs for CCL disease in Labrador Retrievers using a receiver operating characteristic curve analysis method. In the future, the tibial plateau angle (TPA) and femoral anteversion angle (FAA) may be used to screen dogs suspected of being susceptible to CCL disease. Last, kinematics and kinetics across the hock, stifle and hip joints in Labrador Retrievers presumed to be at low risk based on their radiographic TPA and FAA were compared to gait data from dogs presumed to be predisposed to CCL disease for overground and treadmill trotting gait. For overground trials, extensor moment at the hock and energy generated around the hock and stifle joints were increased in predisposed limbs compared to non predisposed limbs. For treadmill trials, dogs qualified as predisposed to CCL disease held their stifle at a greater degree of flexion, extended their hock less, and generated more energy around the stifle joints while trotting on a treadmill compared with dogs at low risk. This characterization of the gait mechanics of Labrador Retrievers at low risk or predisposed to CCL disease may help developing and monitoring preventive exercise programs to decrease gastrocnemius dominance and strengthened the hamstring muscle group.
Resumo:
This dissertation research points out major challenging problems with current Knowledge Organization (KO) systems, such as subject gateways or web directories: (1) the current systems use traditional knowledge organization systems based on controlled vocabulary which is not very well suited to web resources, and (2) information is organized by professionals not by users, which means it does not reflect intuitively and instantaneously expressed users’ current needs. In order to explore users’ needs, I examined social tags which are user-generated uncontrolled vocabulary. As investment in professionally-developed subject gateways and web directories diminishes (support for both BUBL and Intute, examined in this study, is being discontinued), understanding characteristics of social tagging becomes even more critical. Several researchers have discussed social tagging behavior and its usefulness for classification or retrieval; however, further research is needed to qualitatively and quantitatively investigate social tagging in order to verify its quality and benefit. This research particularly examined the indexing consistency of social tagging in comparison to professional indexing to examine the quality and efficacy of tagging. The data analysis was divided into three phases: analysis of indexing consistency, analysis of tagging effectiveness, and analysis of tag attributes. Most indexing consistency studies have been conducted with a small number of professional indexers, and they tended to exclude users. Furthermore, the studies mainly have focused on physical library collections. This dissertation research bridged these gaps by (1) extending the scope of resources to various web documents indexed by users and (2) employing the Information Retrieval (IR) Vector Space Model (VSM) - based indexing consistency method since it is suitable for dealing with a large number of indexers. As a second phase, an analysis of tagging effectiveness with tagging exhaustivity and tag specificity was conducted to ameliorate the drawbacks of consistency analysis based on only the quantitative measures of vocabulary matching. Finally, to investigate tagging pattern and behaviors, a content analysis on tag attributes was conducted based on the FRBR model. The findings revealed that there was greater consistency over all subjects among taggers compared to that for two groups of professionals. The analysis of tagging exhaustivity and tag specificity in relation to tagging effectiveness was conducted to ameliorate difficulties associated with limitations in the analysis of indexing consistency based on only the quantitative measures of vocabulary matching. Examination of exhaustivity and specificity of social tags provided insights into particular characteristics of tagging behavior and its variation across subjects. To further investigate the quality of tags, a Latent Semantic Analysis (LSA) was conducted to determine to what extent tags are conceptually related to professionals’ keywords and it was found that tags of higher specificity tended to have a higher semantic relatedness to professionals’ keywords. This leads to the conclusion that the term’s power as a differentiator is related to its semantic relatedness to documents. The findings on tag attributes identified the important bibliographic attributes of tags beyond describing subjects or topics of a document. The findings also showed that tags have essential attributes matching those defined in FRBR. Furthermore, in terms of specific subject areas, the findings originally identified that taggers exhibited different tagging behaviors representing distinctive features and tendencies on web documents characterizing digital heterogeneous media resources. These results have led to the conclusion that there should be an increased awareness of diverse user needs by subject in order to improve metadata in practical applications. This dissertation research is the first necessary step to utilize social tagging in digital information organization by verifying the quality and efficacy of social tagging. This dissertation research combined both quantitative (statistics) and qualitative (content analysis using FRBR) approaches to vocabulary analysis of tags which provided a more complete examination of the quality of tags. Through the detailed analysis of tag properties undertaken in this dissertation, we have a clearer understanding of the extent to which social tagging can be used to replace (and in some cases to improve upon) professional indexing.
Resumo:
Background: Understanding transcriptional regulation by genome-wide microarray studies can contribute to unravel complex relationships between genes. Attempts to standardize the annotation of microarray data include the Minimum Information About a Microarray Experiment (MIAME) recommendations, the MAGE-ML format for data interchange, and the use of controlled vocabularies or ontologies. The existing software systems for microarray data analysis implement the mentioned standards only partially and are often hard to use and extend. Integration of genomic annotation data and other sources of external knowledge using open standards is therefore a key requirement for future integrated analysis systems. Results: The EMMA 2 software has been designed to resolve shortcomings with respect to full MAGE-ML and ontology support and makes use of modern data integration techniques. We present a software system that features comprehensive data analysis functions for spotted arrays, and for the most common synthesized oligo arrays such as Agilent, Affymetrix and NimbleGen. The system is based on the full MAGE object model. Analysis functionality is based on R and Bioconductor packages and can make use of a compute cluster for distributed services. Conclusion: Our model-driven approach for automatically implementing a full MAGE object model provides high flexibility and compatibility. Data integration via SOAP-based web-services is advantageous in a distributed client-server environment as the collaborative analysis of microarray data is gaining more and more relevance in international research consortia. The adequacy of the EMMA 2 software design and implementation has been proven by its application in many distributed functional genomics projects. Its scalability makes the current architecture suited for extensions towards future transcriptomics methods based on high-throughput sequencing approaches which have much higher computational requirements than microarrays.
Resumo:
Dissertação de Mestrado, Gestão de Unidades de Saúde, Faculdade de Economia, Universidade do Algarve, 2016
Resumo:
The aim of the present study was to propose and evaluate the use of factor analysis (FA) in obtaining latent variables (factors) that represent a set of pig traits simultaneously, for use in genome-wide selection (GWS) studies. We used crosses between outbred F2 populations of Brazilian Piau X commercial pigs. Data were obtained on 345 F2 pigs, genotyped for 237 SNPs, with 41 traits. FA allowed us to obtain four biologically interpretable factors: ?weight?, ?fat?, ?loin?, and ?performance?. These factors were used as dependent variables in multiple regression models of genomic selection (Bayes A, Bayes B, RR-BLUP, and Bayesian LASSO). The use of FA is presented as an interesting alternative to select individuals for multiple variables simultaneously in GWS studies; accuracy measurements of the factors were similar to those obtained when the original traits were considered individually. The similarities between the top 10% of individuals selected by the factor, and those selected by the individual traits, were also satisfactory. Moreover, the estimated markers effects for the traits were similar to those found for the relevant factor.
Resumo:
The continual eruptive activity, occurrence of an ancestral catastrophic collapse, and inherent geologic features of Pacaya volcano (Guatemala) demands an evaluation of potential collapse hazards. This thesis merges techniques in the field and laboratory for a better rock mass characterization of volcanic slopes and slope stability evaluation. New field geological, structural, rock mechanical and geotechnical data on Pacaya is reported and is integrated with laboratory tests to better define the physical-mechanical rock mass properties. Additionally, this data is used in numerical models for the quantitative evaluation of lateral instability of large sector collapses and shallow landslides. Regional tectonics and local structures indicate that the local stress regime is transtensional, with an ENE-WSW sigma 3 stress component. Aligned features trending NNW-SSE can be considered as an expression of this weakness zone that favors magma upwelling to the surface. Numerical modeling suggests that a large-scale collapse could be triggered by reasonable ranges of magma pressure (greater than or equal to 7.7 MPa if constant along a central dyke) and seismic acceleration (greater than or equal to 460 cm/s2), and that a layer of pyroclastic deposits beneath the edifice could have been a factor which controlled the ancestral collapse. Finally, the formation of shear cracks within zones of maximum shear strain could provide conduits for lateral flow, which would account for long lava flows erupted at lower elevations.