961 resultados para Complexity science
Resumo:
This paper presents a feasibility study on structural damage alarming and localization of long-span cable-supported bridges using multi-novelty indices formulated by monitoring-derived modal parameters. The proposed method which requires neither structural model nor damage model is applicable to structures of arbitrary complexity. With the intention to enhance the tolerance to measurement noise/uncertainty and the sensitivity to structural damage, an improved novelty index is formulated in terms of auto-associative neural networks (ANNs) where the output vector is designated to differ from the input vector while the training of the ANNs needs only the measured modal properties of the intact structure under in-service conditions. After validating the enhanced capability of the improved novelty index for structural damage alarming over the commonly configured novelty index, the performance of the improved novelty index for damage occurrence detection of large-scale bridges is examined through numerical simulation studies of the suspension Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) incurred with different types of structural damage. Then the improved novelty index is extended to formulate multi-novelty indices in terms of the measured modal frequencies and incomplete modeshape components for damage region identification. The capability of the formulated multi-novelty indices for damage region identification is also examined through numerical simulations of the TMB and TKB.
A framework for understanding and generating integrated solutions for residential peak energy demand
Resumo:
Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times.
Resumo:
Biomechanical analysis of sport performance provides an objective method of determining performance of a particular sporting technique. In particular, it aims to add to the understanding of the mechanisms influencing performance, characterization of athletes, and provide insights into injury predisposition. Whilst the performance in sport of able-bodied athletes is well recognised in the literature, less information and understanding is known on the complexity, constraints and demands placed on the body of an individual with a disability. This paper provides a dialogue that outlines scientific issues of performance analysis of multi-level athletes with a disability, including Paralympians. Four integrated themes are explored the first of which focuses on how biomechanics can contribute to the understanding of sport performance in athletes with a disability and how it may be used as an evidence-based tool. This latter point questions the potential for a possible cultural shift led by emergence of user-friendly instruments. The second theme briefly discusses the role of reliability of sport performance and addresses the debate of two-dimensional and three-dimensional analysis. The third theme address key biomechanical parameters and provides guidance to clinicians, and coaches on the approaches adopted using biomechanical/sport performance analysis for an athlete with a disability starting out, to the emerging and elite Paralympian. For completeness of this discourse, the final theme is based on the controversial issues on the role of assisted devices and the inclusion of Paralympians into able-bodied sport is also presented. All combined, this dialogue highlights the intricate relationship between biomechanics and training of individuals with a disability. Furthermore, it illustrates the complexity of modern training of athletes which can only lead to a better appreciation of the performances to be delivered in the London 2012 Paralympic Games
Resumo:
Using cameras onboard a robot for detecting a coloured stationary target outdoors is a difficult task. Apart from the complexity of separating the target from the background scenery over different ranges, there are also the inconsistencies with direct and reflected illumination from the sun,clouds, moving and stationary objects. They can vary both the illumination on the target and its colour as perceived by the camera. In this paper, we analyse the effect of environment conditions, range to target, camera settings and image processing on the reported colours of various targets. The analysis indicates the colour space and camera configuration that provide the most consistent colour values over varying environment conditions and ranges. This information is used to develop a detection system that provides range and bearing to detected targets. The system is evaluated over various lighting conditions from bright sunlight, shadows and overcast days and demonstrates robust performance. The accuracy of the system is compared against a laser beacon detector with preliminary results indicating it to be a valuable asset for long-range coloured target detection.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is both arduous and dangerous. However, while the industry makes extensive use of mechanisation it has shown a slow uptake of automation. A major cause of this is the complexity of the task, and the limitations of existing automation technology which is predicated on a structured and time invariant working environment. Here we discuss the topic of mining automation from a robotics and computer vision perspective — as a problem in sensor based robot control, an issue which the robotics community has been studying for nearly two decades. We then describe two of our current mining automation projects to demonstrate what is possible for both open-pit and underground mining operations.
Resumo:
A three-year research program funded by the Australian Research Council and conducted by the four Learned Academies through the Australian Council of Learned Academies for PMSEIC, through the Office of the Chief Scientist. Securing Australia’s Future delivers research-based evidence and findings to support policy development in areas of importance to Australia’s future.
Resumo:
As a result of the more distributed nature of organisations and the inherently increasing complexity of their business processes, a significant effort is required for the specification and verification of those processes. The composition of the activities into a business process that accomplishes a specific organisational goal has primarily been a manual task. Automated planning is a branch of artificial intelligence (AI) in which activities are selected and organised by anticipating their expected outcomes with the aim of achieving some goal. As such, automated planning would seem to be a natural fit to the BPM domain to automate the specification of control flow. A number of attempts have been made to apply automated planning to the business process and service composition domain in different stages of the BPM lifecycle. However, a unified adoption of these techniques throughout the BPM lifecycle is missing. As such, we propose a new intention-centric BPM paradigm, which aims on minimising the specification effort by exploiting automated planning techniques to achieve a pre-stated goal. This paper provides a vision on the future possibilities of enhancing BPM using automated planning. A research agenda is presented, which provides an overview of the opportunities and challenges for the exploitation of automated planning in BPM.
Resumo:
We have studied the mineral kornerupine, a borosilicate mineral, by using a combination of scanning electron microscopy with energy-dispersive analysis and Raman and infrared spectroscopy. Qualitative chemical analysis of kornerupine shows a magnesium–aluminum silicate. Strong Raman bands at 925, 995, and 1051 cm−1 with bands of lesser intensity at 1035 and 1084 cm−1 are assigned to the silicon–oxygen stretching vibrations of the siloxane units. Raman bands at 923 and 947 cm−1 are attributed to the symmetrical stretching vibrations of trigonal boron. Infrared spectra show greater complexity and the infrared bands are more difficult to assign. Two intense Raman bands at 3547 and 3612 cm−1 are assigned to the stretching vibrations of hydroxyl units. The infrared bands are observed at 3544 and 3610 cm−1. Water is also identified in the spectra of kornerupine.
Resumo:
The world and its peoples are facing multiple, complex challenges and we cannot continue as we are (Moss, 2010). Earth‘s “natural capital” - nature‘s ability to provide essential ecosystem services to stabilize world climate systems, maintain water quality, support secure food production, supply energy needs, moderate environmental impacts, and ensure social harmony and equity – is seriously compromised (Gough, 2005; Hawkins, Lovins & Lovins, 1999). To further summarize, current rates of resource consumption by the global human population are unsustainable (Kitzes, Peller, Goldfinger & Wackernagel, 2007) for human and non-human species, and for future generations. Further, continuing growth in world population and global political commitment to growth economics compounds these demands. Despite growing recognition of the serious consequences for people and planet, little consideration is given, within most nations, to the social and environmental issues that economic growth brings. For example, Australia is recognised as one of the developed countries most vulnerable to the impacts of climate change. Yet, to date, responses (such as carbon pricing) have been small-scale, fragmented, and their worth disputed, even ridiculed. This is at a time referred to as ‘the critical decade’ (Hughes & McMichael, 2011) when the world’s peoples must make strong choices if we are to avert the worst impacts of climate change.
Resumo:
The mineral ushkovite has been analyzed using a combination of electron microscopy with EDX and vibrational spectroscopy. Chemical analysis shows the mineral contains P, Mg with very minor Fe. Thus, the formula of the studied ushkovite is Mg32+(PO4)2·8H2O. The Raman spectrum shows an intense band at 953 cm−1 assigned to the ν1 symmetric stretching mode. In the infrared spectra complexity exists with multiple antisymmetric stretching vibrations observed, due to the reduced tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong infrared bands around 827 cm−1 are attributed to water librational modes. The Raman spectra of the hydroxyl-stretching region are complex with overlapping broad bands. Hydroxyl stretching vibrations are identified at 2881, 2998, 3107, 3203, 3284 and 3457 cm−1. The wavenumber band at 3457 cm−1 is attributed to the presence of FeOH groups. This complexity is reflected in the water HOH bending modes where a strong infrared band centered around 1653 cm−1 is found. Such a band reflects the strong hydrogen bonding of the water molecules to the phosphate anions in adjacent layers. Spectra show three distinct OH bending bands from strongly hydrogen-bonded, weakly hydrogen bonded water and non-hydrogen bonded water. Vibrational spectroscopy enhances our knowledge of the molecular structure of ushkovite.
Resumo:
There is an ongoing debate about the reasons for and factors contributing to healthcare-associated infection (HAI). Different solutions have been proposed over time to control the spread of HAI, with more focus on hand hygiene than on other aspects such as preventing the aerial dissemination of bacteria. Yet, it emerges that there is a need for a more pluralistic approach to infection control; one that reflects the complexity of the systems associated with HAI and involves multidisciplinary teams including hospital doctors, infection control nurses, microbiologists, architects, and engineers with expertise in building design and facilities management. This study reviews the knowledge base on the role that environmental contamination plays in the transmission of HAI, with the aim of raising awareness regarding infection control issues that are frequently overlooked. From the discussion presented in the study, it is clear that many unknowns persist regarding aerial dissemination of bacteria, and its control via cleaning and disinfection of the clinical environment. There is a paucity of good-quality epidemiological data, making it difficult for healthcare authorities to develop evidence-based policies. Consequently, there is a strong need for carefully designed studies to determine the impact of environmental contamination on the spread of HAI.
Resumo:
Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with civil aircraft and UAV, UCAV systems are implemented numerically and discussed. Applications of increasing optimization complexity are presented as well as two hands-on test cases problems. These examples focus on aeronautical applications and will be useful to the practitioner in the laboratory or in industrial design environments. The evolutionary methods coupled with games presented in this volume can be applied to other areas including surface and marine transport, structures, biomedical engineering, renewable energy and environmental problems.
Resumo:
Urbanisation significantly changes the characteristics of a catchment as natural areas are transformed to impervious surfaces such as roads, roofs and parking lots. The increased fraction of impervious surfaces leads to changes to the stormwater runoff characteristics, whilst a variety of anthropogenic activities common to urban areas generate a range of pollutants such as nutrients, solids and organic matter. These pollutants accumulate on catchment surfaces and are removed and trans- ported by stormwater runoff and thereby contribute pollutant loads to receiving waters. In summary, urbanisation influences the stormwater characteristics of a catchment, including hydrology and water quality. Due to the growing recognition that stormwater pollution is a significant environmental problem, the implementation of mitigation strategies to improve the quality of stormwater runoff is becoming increasingly common in urban areas. A scientifically robust stormwater quality treatment strategy is an essential requirement for effective urban stormwater management. The efficient design of treatment systems is closely dependent on the state of knowledge in relation to the primary factors influencing stormwater quality. In this regard, stormwater modelling outcomes provide designers with important guidance and datasets which significantly underpin the design of effective stormwater treatment systems. Therefore, the accuracy of modelling approaches and the reliability modelling outcomes are of particular concern. This book discusses the inherent complexity and key characteristics in the areas of urban hydrology and stormwater quality, based on the influence exerted by a range of rainfall and catchment characteristics. A comprehensive field sampling and testing programme in relation to pollutant build-up, an urban catchment monitoring programme in relation to stormwater quality and the outcomes from advanced statistical analyses provided the platform for the knowledge creation. Two case studies and two real-world applications are discussed to illustrate the translation of the knowledge created to practical use in relation to the role of rainfall and catchment characteristics on urban stormwater quality. An innovative rainfall classification based on stormwater quality was developed to support the effective and scientifically robust design of stormwater treatment systems. Underpinned by the rainfall classification methodology, a reliable approach for design rainfall selection is proposed in order to optimise stormwater treatment based on both, stormwater quality and quantity. This is a paradigm shift from the common approach where stormwater treatment systems are designed based solely on stormwater quantity data. Additionally, how pollutant build-up and stormwater runoff quality vary with a range of catchment characteristics was also investigated. Based on the study out- comes, it can be concluded that the use of only a limited number of catchment parameters such as land use and impervious surface percentage, as it is the case in current modelling approaches, could result in appreciable error in water quality estimation. Influential factors which should be incorporated into modelling in relation to catchment characteristics, should also include urban form and impervious surface area distribution. The knowledge created through the research investigations discussed in this monograph is expected to make a significant contribution to engineering practice such as hydrologic and stormwater quality modelling, stormwater treatment design and urban planning, as the study outcomes provide practical approaches and recommendations for urban stormwater quality enhancement. Furthermore, this monograph also demonstrates how fundamental knowledge of stormwater quality processes can be translated to provide guidance on engineering practice, the comprehensive application of multivariate data analyses techniques and a paradigm on integrative use of computer models and mathematical models to derive practical outcomes.
Resumo:
While the implementation of the IEC 61850 standard has significantly enhanced the performance of communications in electrical substations, it has also increased the complexity of the system. Subsequently, these added elaborations have introduced new challenges in relation to the skills and tools required for the design, test and maintenance of 61850-compatible substations. This paper describes a practical experience of testing a protection relay using a non-conventional test equipment; in addition, it proposes a third party software technique to reveal the contents of the packets transferred on the substation network. Using this approach, the standard objects can be linked and interpreted to what the end-users normally see in the IED and test equipment proprietary software programs.