992 resultados para Combined lethal toxicity
Resumo:
Proteases are important for regulating multiple tumorigenic processes, including angiogenesis, tumor growth, and invasion. Elevated protease expression is associated with poor patient prognosis across numerous tumor types. Several multigene protease families have been implicated in cancer, including cysteine cathepsins. However, whether individual family members have unique roles or are functionally redundant remains poorly understood. Here we demonstrate stage-dependent effects of simultaneously deleting cathepsin B (CtsB) and CtsS in a murine pancreatic neuroendocrine tumor model. Early in tumorigenesis, the double knockout results in an additive reduction in angiogenic switching, whereas at late stages, several tumorigenic phenotypes are unexpectedly restored to wild-type levels. We identified CtsZ, which is predominantly supplied by tumor-associated macrophages, as the compensatory protease that regulates the acquired tumor-promoting functions of lesions deficient in both CtsB and CtsS. Thus, deletion of multiple cathepsins can lead to stage-dependent, compensatory mechanisms in the tumor microenvironment, which has potential implications for the clinical consideration of selective versus pan-family cathepsin inhibitors in cancer.
Resumo:
The genetic aetiology of congenital hypopituitarism (CH) is not entirely elucidated. FGFR1 and PROKR2 loss-of-function mutations are classically involved in hypogonadotrophic hypogonadism (HH), however, due to the clinical and genetic overlap of HH and CH; these genes may also be involved in the pathogenesis of CH. Using a candidate gene approach, we screened 156 Brazilian patients with combined pituitary hormone deficiencies (CPHD) for loss-of-function mutations in FGFR1 and PROKR2. We identified three FGFR1 variants (p.Arg448Trp, p.Ser107Leu and p.Pro772Ser) in four unrelated patients (two males) and two PROKR2 variants (p.Arg85Cys and p.Arg248Glu) in two unrelated female patients. Five of the six patients harbouring the variants had a first-degree relative that was an unaffected carrier of it. Results of functional studies indicated that the new FGFR1 variant p.Arg448Trp is a loss-of-function variant, while p.Ser107Leu and p.Pro772Ser present signalling activity similar to the wild-type form. Regarding PROKR2 variants, results from previous functional studies indicated that p.Arg85Cys moderately compromises receptor signalling through both MAPK and Ca(2) (+) pathways while p.Arg248Glu decreases calcium mobilization but has normal MAPK activity. The presence of loss-of-function variants of FGFR1 and PROKR2 in our patients with CPHD is indicative of an adjuvant and/or modifier effect of these rare variants on the phenotype. The presence of the same variants in unaffected relatives implies that they cannot solely cause the phenotype. Other associated genetic and/or environmental modifiers may play a role in the aetiology of this condition.
Resumo:
BACKGROUND: Risky single-occasion drinking (RSOD) is a prevalent and potentially harmful alcohol use pattern associated with increased alcohol use disorder (AUD). However, RSOD is commonly associated with a higher level of alcohol intake, and most studies have not controlled for drinking volume (DV). Thus, it is unclear whether the findings provide information about RSOD or DV. This study sought to investigate the independent and combined effects of RSOD and DV on AUD. METHODS: Data were collected in the longitudinal Cohort Study on Substance Use Risk Factors (C-SURF) among 5598 young Swiss male alcohol users in their early twenties. Assessment included DV, RSOD, and AUD at two time points. Generalized linear models for binomial distributions provided evidence regarding associations of DV, RSOD, and their interaction. RESULTS: DV, RSOD, and their interaction were significantly related to the number of AUD criteria. The slope of the interaction was steeper for non/rare RSOD than for frequent RSOD. CONCLUSIONS: RSOD appears to be a harmful pattern of drinking, associated with increased AUD and it moderated the relationship between DV and AUD. This study highlighted the importance of taking drinking patterns into account, for both research and public health planning, since RSO drinkers constitute a vulnerable subgroup for AUD.
Resumo:
The present study was performed in an attempt to develop an in vitro integrated testing strategy (ITS) to evaluate drug-induced neurotoxicity. A number of endpoints were analyzed using two complementary brain cell culture models and an in vitro blood-brain barrier (BBB) model after single and repeated exposure treatments with selected drugs that covered the major biological, pharmacological and neuro-toxicological responses. Furthermore, four drugs (diazepam, cyclosporine A, chlorpromazine and amiodarone) were tested more in depth as representatives of different classes of neurotoxicants, inducing toxicity through different pathways of toxicity. The developed in vitro BBB model allowed detection of toxic effects at the level of BBB and evaluation of drug transport through the barrier for predicting free brain concentrations of the studied drugs. The measurement of neuronal electrical activity was found to be a sensitive tool to predict the neuroactivity and neurotoxicity of drugs after acute exposure. The histotypic 3D re-aggregating brain cell cultures, containing all brain cell types, were found to be well suited for OMICs analyses after both acute and long term treatment. The obtained data suggest that an in vitro ITS based on the information obtained from BBB studies and combined with metabolomics, proteomics and neuronal electrical activity measurements performed in stable in vitro neuronal cell culture systems, has high potential to improve current in vitro drug-induced neurotoxicity evaluation.
Resumo:
Objective Comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and Methods Simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results Intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h-1.p-1.s, respectively, on the healthy tissue, on the balloon periphery and on the I 1 and I 2 tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h-1.p-1.s, respectively on the healthy tissue, on the target tumor and on the I 1 and I 2 infiltration zones. Conclusion Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones.
Resumo:
Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells. We produced similar mutants, together with a well-known non-toxic mutant (Etx-H106P), as green fluorescent protein (GFP) fusion proteins to perform in vivo studies in an acutely intoxicated mouse model. The mutant (GFP-Etx-I51C/A114C) had a lethal effect with generalized edema, and accumulated in the brain parenchyma due to its ability to cross the blood-brain barrier (BBB). In the renal system, this mutant had a cytotoxic effect on distal tubule epithelial cells. The other mutants studied (GFP-Etx-V56C/F118C and GFP-Etx-H106P) did not have a lethal effect or cross the BBB, and failed to induce a cytotoxic effect on renal epithelial cells. These data suggest a direct correlation between the lethal effect of the toxin, with its cytotoxic effect on the kidney distal tubule cells, and the ability to cross the BBB.
Resumo:
The capacity of a polypeptide chain to engage in an amyloid formation process and cause a conformational disease is contained in its sequence. Some of the sequences undergoing fibrillation contain critical methionine (Met) residues which in vivo can be synthetically substituted by selenomethionine (SeM) and alter their properties.
Resumo:
The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by 'RTK swapping' by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.
Resumo:
The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by 'RTK swapping' by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.
Resumo:
Infertility is a common late effect of childhood cancer treatment. Testicular toxicity can clinically be first detected after the onset of pubertal maturation of the patients when the testis does not grow, spermatogenesis does not initiate and serum levels of gonadotrophins rise. Improved prognosis for childhood cancer has resulted in a growing number of childhood cancer survivors with late effects. In our study, we developed novel tools for detecting cancer therapy-related testicular toxicity during development. By using these methods the effects of the tyrosine kinase inhibitor imatinib mesylate, chemotherapy agent doxorubicin and irradiation on testicular development were investigated in rat and monkey. Patients with chronic myeloid leukemia and some patients with acute lymphoblastic leukemia have fusion gene BCR-ABL which codes for abnormal tyrosine kinase protein. Imatinib mesylate (Glivec®) inhibits activity of this protein. In addition, imatinib inhibits the action of the c-kit and PDGF –receptors, which are both important for the survival and proliferation of the spermatogonial stem cell pool. Imatinib exposure during prepubertal development disturbed the development and the growth of the testis. Spermatogonial stem cells were also sensitive to the toxic effects of doxorubicin and irradiation during the initiation phase of spermatogenesis. In addition, the effect of the treatment of acute lymphoblastic leukemia on germ cell numbers and recovery of reproductive functions after sexual maturation was investigated. Therapy for childhood acute lymphoblastic leukemia seldom results in infertility. The present study gives new information on the mechanisms by which cancer treatments exert their gonadal toxicity in immature testis.
Resumo:
A theoretical model for the noise properties of Schottky barrier diodes in the framework of the thermionic-emission¿diffusion theory is presented. The theory incorporates both the noise inducedby the diffusion of carriers through the semiconductor and the noise induced by the thermionicemission of carriers across the metal¿semiconductor interface. Closed analytical formulas arederived for the junction resistance, series resistance, and contributions to the net noise localized indifferent space regions of the diode, all valid in the whole range of applied biases. An additionalcontribution to the voltage-noise spectral density is identified, whose origin may be traced back tothe cross correlation between the voltage-noise sources associated with the junction resistance andthose for the series resistance. It is argued that an inclusion of the cross-correlation term as a newelement in the existing equivalent circuit models of Schottky diodes could explain the discrepanciesbetween these models and experimental measurements or Monte Carlo simulations.
Resumo:
A theoretical model for the noise properties of Schottky barrier diodes in the framework of the thermionic-emission¿diffusion theory is presented. The theory incorporates both the noise inducedby the diffusion of carriers through the semiconductor and the noise induced by the thermionicemission of carriers across the metal¿semiconductor interface. Closed analytical formulas arederived for the junction resistance, series resistance, and contributions to the net noise localized indifferent space regions of the diode, all valid in the whole range of applied biases. An additionalcontribution to the voltage-noise spectral density is identified, whose origin may be traced back tothe cross correlation between the voltage-noise sources associated with the junction resistance andthose for the series resistance. It is argued that an inclusion of the cross-correlation term as a newelement in the existing equivalent circuit models of Schottky diodes could explain the discrepanciesbetween these models and experimental measurements or Monte Carlo simulations.
Resumo:
Among increasingly used pharmaceutical products, β-blockers have been commonly reported at low concentrations in rivers and littoral waters of Europe and North America. Little is known about the toxicity of these chemicals in freshwater ecosystems while their presence may lead to chronic pollution. Hence, in this study the acute toxicity of 3 β-blockers: metoprolol, propranolol and atenolol on fluvial biofilms was assessed by using several biomarkers. Some were indicative of potential alterations in biofilm algae (photosynthetic efficiency), and others in biofilm bacteria (peptidase activity, bacterial mortality). Propranolol was the most toxic β-blocker, mostly affecting the algal photosynthetic process. The exposure to 531 μg/L of propranolol caused 85% of inhibition of photosynthesis after 24 h. Metoprolol was particularly toxic for bacteria. Though estimated No-Effect Concentrations (NEC) were similar to environmental concentrations, higher concentrations of the toxic (503 μg/L metoprolol) caused an increase of 50% in bacterial mortality. Atenolol was the least toxic of the three tested β-blockers. Effects superior to 50% were only observed at very high concentration (707 mg/L). Higher toxicity of metoprolol and propranolol might be due to better absorption within biofilms of these two chemicals. Since β-blockers are mainly found in mixtures in rivers, their differential toxicity could have potential relevant consequences on the interactions between algae and bacteria within river biofilms
Resumo:
Mediterranean salt marshes are ecosystems that are highly influenced by sea changes and freshwater inputs from runoff. In these ecosystems, toxic and non-toxic algae blooms often produce large and unpredictable biomasses of phytoplankton. The Microtox R test has been described as a successful, quick method for detecting toxicity in various phytoplankton taxa. Ourstudy sought to test the efficiency of Microtox R in detecting toxic HAB in Mediterranean salt marshes. The results showed that the Microtox R test was able to detect toxic substances in the particulate matter of several lagoons in the Empordà salt marshes. This Microtox R toxicity coincided with periods when potentially harmful cyanobacteria, dinoflagellates andhaptophytes had a high biomass. The results suggest that potentially harmful phytoplankton cannot be ruled out as a source of Microtox R