935 resultados para Cold neutrons
Resumo:
Sediment sampling was performed at the center of the clam colony. Immediately after sample recovery onboard, the sediment core was sub-sampled and preserved for later analyses. Pyrite and carbonate content of the sediment was measured by X-ray refraction analysis as previously described (Ertefai et al., 2010).
Resumo:
The increasing pCO2 in seawater is a serious threat for marine calcifiers and alters the biogeochemistry of the ocean. Therefore, the reconstruction of past-seawater properties and their impact on marine ecosystems is an important way to investigate the underlying mechanisms and to better constrain the effects of possible changes in the future ocean. Cold-water coral (CWC) ecosystems are biodiversity hotspots. Living close to aragonite undersaturation, these corals serve as living laboratories as well as archives to reconstruct the boundary conditions of their calcification under the carbonate system of the ocean. We investigated the reef-building CWC Lophelia pertusa as a recorder of intermediate ocean seawater pH. This species-specific field calibration is based on a unique sample set of live in situ collected L. pertusa and corresponding seawater samples. These data demonstrate that uranium speciation and skeletal incorporation for azooxanthellate scleractinian CWCs is pH dependent and can be reconstructed with an uncertainty of ±0.15. Our Lophelia U / Ca-pH calibration appears to be controlled by the high pH values and thus highlighting the need for future coral and seawater sampling to refine this relationship. However, this study recommends L. pertusa as a new archive for the reconstruction of intermediate water mass pH and hence may help to constrain tipping points for ecosystem dynamics and evolutionary characteristics in a changing ocean.
Resumo:
Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold-water corals are even more vulnerable as they live in areas where aragonite saturation (Omega ara) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold-water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO2 1058 µatm, Omega ara 1.29), and nor are the rates of skeletal dissolution in D. dianthus. We transplanted D. dianthus to 350 m depth (pHT 8.02; pCO2 448 µatm, Omega ara 2.58) and to a 3 m depth CO2 seep in oligotrophic waters (pHT 7.35; pCO2 2879 µatm, Omega ara 0.76) and found that the transplants calcified at the same rates regardless of the pCO2 confirming their resilience to acidification, but at significantly lower rates than corals that were fed in aquaria. Our combination of field and laboratory evidence suggests that ocean acidification will not disrupt cold-water coral calcification although falling aragonite levels may affect other organismal physiological and/or reef community processes.
Resumo:
Deep-water ecosystems are characterized by relatively low carbonate concentration values and, due to ocean acidification (OA), these habitats might be among the first to be exposed to undersaturated conditions in the forthcoming years. However, until now, very few studies have been conducted to test how cold-water coral (CWC) species react to such changes in the seawater chemistry. The present work aims to investigate the mid-term effect of decreased pH on calcification of the two branching CWC species most widely distributed in the Mediterranean, Lophelia pertusa and Madrepora oculata. No significant effects were observed in the skeletal growth rate, microdensity and porosity of both species after 6 months of exposure. However, while the calcification rate of M. oculata was similar for all colony fragments, a heterogeneous skeletal growth pattern was observed in L. pertusa, the younger nubbins showing higher growth rates than the older ones. A higher energy demand is expected in these young, fast-growing fragments and, therefore, a reduction in calcification might be noticed earlier during long-term exposure to acidified conditions.