937 resultados para Cold Fronts
Resumo:
The study of glacier fronts combines different geomatics measurement techniques as the classic survey using total station or theodolite, technical GNSS (Global Navigation Satellite System), using laser-scanner or using photogrammetry (air or ground). The measure by direct methods (classical surveying and GNSS) is useful and fast when accessibility to the glaciers fronts is easy, while it is practically impossible to realize, in the case of glacier fronts that end up in the sea (tide water glaciers). In this paper, a methodology that combines photogrammetric methods and other techniques for lifting the front of the glacier Johnsons, inaccessible is studied. The images obtained from the front, come from a non-metric digital camera; its georeferencing to a global coordinate system is performed by measuring points GNSS support in accessible areas of the glacier front side and applying methods of direct intersection in inaccessible points of the front, taking measurements with theodolite. The result of observations obtained were applied to study the temporal evolution (1957-2014) of the position of the Johnsons glacier front and the position of the Argentina, Las Palmas and Sally Rocks lobes front (Hurd glacier).
Resumo:
During the JC-10 cruise (2007), we sampled the Darwin mud volcano (MV) for meiofaunal community and trophic structure in relation of pore-water geochemistry along a 10 m transect from a seep site on the rim of the crater towards the MV slope. Sediment samples were retrieved by the ROV Isis using push cores. On board and after the pore water extraction, the top 10 cm of the cores were sliced into 1 cm sections and fixed them in 4% formaldehyde for meiofaunal community analysis. In the home laboratory, the formaldehyde-fixed samples were washed over a 32 µm mesh sieve and extracted the meiofauna from the sediment by Ludox centrifugation (Heip et al. 1985). Meiofauna was then sorted, enumerated and identified at coarse taxonomic level. From each slice, ca. 100 nematodes were identified to genus level. Afterwards, abundance of Nematoda were depth integrated over the top 5 cm to gain individual abundances per 10 cm**2. Overall, total nematode biomass in the top 5 cm of the seep sediment core was ~10x higher than that in the core taken 1100 m away. Nematode genus composition varied little among cores and was mainly dominated by Sabatieria.