875 resultados para Cohomology of Groups


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Novel bisphenol monomers (1a-d) containing phthalimide groups were synthesized by the reaction of phenolphthalein with ammonia, methylamine, aniline, and 4-tert-butylanilne, respectively. A series of cardo poly (arylene ether sulfone)s was synthesized via aromatic nucleophilic substitution of 1a-d with dichlorodiphenylsulfone, and characterized in terms of thermal, mechanical and gas transport properties to H-2, O-2, N-2, and CO2. The polymers showed high glass transition temperature in the range 230-296 degrees C, good solubility in polar solvents as well as excellent thermal stability with 5% weight loss above 410 degrees C. The most permeable membrane studied showed permeability coefficients of 1.78 barrers to O-2 and 13.80 barrers to CO2, with ideal selectivity. factors of 4.24 for O-2/N-2 pair and 28.75 for CO2/CH4 pair. Furthermore, the structure-property relationship among these cardo poly(arylene ether sulfone)s had been discussed on solubility, thermal stability, mechanical, and gas permeation properties. The results indicated that introducing 4-tert-butylphenyl group improved the gas permeability of polymers evidently.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of soluble poly(amide-imide)s (PAIs) bearing triethylammonium sulfonate groups were synthesized directly using trimellitic anhydride chloride (TMAC) polycondensation with sulfonated diamine such as 2,2'-benzidinedisulfonic acid (BDSA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS), and nonsulfonated diamine 4,4-diaminodiphenyl methane in the presence of triethylamine. The resulting copolymers exhibited high molecular weights (high inherent viscosity), and a combination of desirable properties such as good solubility in dipolar aprotic solvents, film-forming capability, and good mechanical properties. Wide-angle X-ray diffraction revealed that the polymers were amorphous. These copolymers showed high permeability coefficients of water vapor because of the presence of the hydrophilic triethylammonium sulfonate groups. The water vapor permeability coefficients (P-w) and permselectivity coefficients of water vapor to nitrogen and methane [alpha(H2O/N-2) and (alpha(H2O/CH4)] Of the films increased with increasing the amount of the triethylammonium sulfonated groups.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel sulfonated diamine monomer, 2,2'-bis(p-aminophenoxy)-1,1'-binaphthyl-6,6'-disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30-80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film-forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945-0.161 S/cm) at 20-80 degrees C in liquid water. The membranes exhibited methanol permeability from 9 x 10(-8) to 5 X 10(-7) cm(2)/s at 20 degrees C, which was much lower than that of Nafion (2 x 10(-6) cm(2)/s). The copolymers were thermally stable up to 300 degrees C. The sulfonated polyimide copolymers with 30-60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The first example of one-dimensional organic-inorganic polymetallic coordination polymer based on heptamolybdate anions, formulated (NH4)[Cu(en)(2)][Na(en)Cu(en)(2)(H2O)(Mo7O24)].4H(2)O (en = ethylenediamine) (1) has been hydrothermally synthesized and characterized by element analysis, IR, EPR, CV and single crystal X-ray diffraction. The structure of 1 is fabricated by self-assembly of integrated heptamolybdic anions without collapse of primary structure and copper-ethylenediamine(en) coordination groups into one-dimensional zigzag-shaped chains.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sulfonated poly(p-phenylene)s (SPPs) containing sulfonic acid groups in their side chains had been directly synthesized by Ni(0) catalytic coupling of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and 2,5-dichlorobenzophenone. The synthesized copolymers possessed high molecular weights revealed by their high viscosity, and the formation of tough and flexible membranes by casting from DMAc solution. The copolymers exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendent groups. Transmission electron microscopic (TEM) analysis revealed that these side-chain type SPP membranes have a microphase-separated structure composed of hydrophilic side-chain domains and hydrophobic polyphenylene main chain domains. The proton conductivities of copolymer membranes increased with the increase of IEC and temperature, reaching values above 3.4 x 10(-1) S/cm at 120 degrees C, which are almost 2-3 times higher than that of Nafion 117 at the same measurement conditions. Consequently, these materials proved to be promising as proton exchange membranes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The divergent synthesis of a new carbosilane liquid-crystalline (LC) dendrimer of the first generation (D1) is described. Twelve 4-butoxyazobenzene groups are used as mesogenic fragments and attached in the periphery of the molecule. Structure and properties of D1 were characterized by element analysis, H-1 NMR, MALDI-TOF-MS, IR, UV-Vis, polarizing optical micrograph, DSC and WAXD. It is argued that mesophase of nematic type is realized. It is shown that the mesophase type of the dendrimer essentially depends on the chemical nature of the mesogenic groups. Phase behavior of D1 is K82N1331132N67K. The melting point of D1 is 30similar to43 degreesC lower than that of M5, its clearing temperature is 9 similar to 11 degreesC higher than that of M5 and its mesophase region is enlarged by 39 similar to 54 degreesC compared to that of M5. Eight extinguished brushes emanating from a stationary point are observed, corresponding to the high-strength disclination of S = + 2 of dendrimer. The clearing enthalpy of D1 is smaller than the value that is commonly found for phase transition n-i in LC and LC polymers. This may be due to the presence of branched dendrimer cores which cannot be easily deformed to fit into the anisotropic LC phase structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Crystallographic equivalence of ether and ketone in all para-substituted PAEKs crystallized in form I was discussed in this paper. In a word, crystallographic equivalence between ether and ketone groups is tenable when polymer contains only phenyl rings in the repeat unit. If a polymer contains a diphenyl group in the repeat unit, two cases should be distinguished. In the case of PEDEKK and PEEKDK, crystallographic equivalence between ether and ketone linkages is untenable, However, in the case of PEDK and PEDEKDK, crystallographic equivalence between ether and ketone linkages is still tenable.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gas transport of hydrogen, oxygen, nitrogen, carbon dioxide, and methane in four cardo poly(aryl ether ketone)s containing different alkyl substituents on the phenyl ring has been examined from 30 to 100 degrees C. The permeability, diffusivity, solubility, and their temperature dependency were studied by correlations with gas shape, size, and critical temperature as well as polymeric structural factors including glass transition, secondary transition, cohesive energy density, and free volume. The bulky, stiff cardo and alkyl groups in tetramethyl-substituted TMPEK-C resulted in increased H-2 permeability (by 55%) and H-2/N-2 permselectivity (by 106%) relative to bisphenol A polysulfone (PSF). Moreover, the weak dependence of gas transport on temperature in TMPEK-C made it maintain high permselectivities (alpha(H2/N2) in 68.3 and alpha(O2/N2) in 5.71) up to 100 degrees C, exhibiting potential for high-temperature gas separation applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An organic-inorganic hybrid solid, (Cu(2,2'-bpy)(2))(2)Mo8O26, has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Dark green crystals crystallize in the orthorhombic system, space group Pna21, a = 24.164(5), b = 18.281(4), c = 11.877(2) Angstrom, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, V= 5247(2) Angstrom (3), Z = 4, lambda (MoK alpha) = 0.71073 Angstrom (R(F) = 0.0331 for 5353 reflections). Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.69 degrees < theta < 25.04 degrees using the omega -scan technique. The structure was solved by the direct method and refined by full-matrix least squares on F-2 using SHELXL-93. The structure of this compound consists of discrete (Cu(2,2'-bpy)(2))(2)Mo8O26 clusters, constructed from beta -octamolybdate subunits ((Mo8O26)(4-)) covalently bonded to two (Cu(2,2'-bpy)(2))(2+) coordination complexes via bridging oxo groups that connect two adjacent molybdenum sites. (C) 2001 Academic Press.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Novel water insoluble sodium sulfonate-functionalized poly(ether ether ketone)s containing cyclohexylidene in the main chain with degree of sulfonation up to 2.0 were synthesized from nucleophilic polycondensation of 5, 5'-carbonylbis (2-fluorobenzenesulfonate), 4, 4'-difluorobenzophenone and 4, 4'-cyclohexylidenebisphenol. The polymers showed excellent thermal stability and good water resistance as well. The DSC diagrams and WAXD patterns indicated an amorphous morphological structure of these polymers. A comprison of some properties between these copolymers and polymers derived from bisphenol A was given.