978 resultados para Code Division Multiple Access
Resumo:
Data on isotopic composition of interstitial and bottom waters collected in an area of gas hydrate occurrence in the Sea of Okhotsk are presented. Investigations indicate that heavy isotopes of oxygen and hydrogen are used in generation of gas hydrate, so that isotopic composition of its water of constitution is: d18O = +1.9 per mil, d2H = +23 per mil (relative to SMOW). Production of authigenic carbonates results in isotopic exchange with interstitial water, which in turn alters its isotopic composition by an increase in d18O. Bottom waters are isotopically light relative to the SMOW standard and to the average isotopic composition of interstitial waters in the area of gas hydrate occurrence in study.
Resumo:
Predicting the impact of ongoing anthropogenic CO2 emissions on calcifying marine organisms is complex, owing to the synergy between direct changes (acidification) and indirect changes through climate change (e.g., warming, changes in ocean circulation, and deoxygenation). Laboratory experiments, particularly on longer-lived organisms, tend to be too short to reveal the potential of organisms to acclimatize, adapt, or evolve and usually do not incorporate multiple stressors. We studied two examples of rapid carbon release in the geological record, Eocene Thermal Maximum 2 (~53.2 Ma) and the Paleocene Eocene Thermal Maximum (PETM, ~55.5 Ma), the best analogs over the last 65 Ma for future ocean acidification related to high atmospheric CO2 levels. We use benthic foraminifers, which suffered severe extinction during the PETM, as a model group. Using synchrotron radiation X-ray tomographic microscopy, we reconstruct the calcification response of survivor species and find, contrary to expectations, that calcification significantly increased during the PETM. In contrast, there was no significant response to the smaller Eocene Thermal Maximum 2, which was associated with a minor change in diversity only. These observations suggest that there is a response threshold for extinction and calcification response, while highlighting the utility of the geological record in helping constrain the sensitivity of biotic response to environmental change.