959 resultados para Clupea harengus abundance as Nautical Area Scattering Coefficient
Resumo:
Cold-seep environments and their associated symbiont-bearing mega faunal communities create islands of primary production for macro-and meiofauna in the otherwise monotonous and nutrient-poor deep-sea environment. To examine the spatial variation and distribution patterns of metazoan meiobenthos in different seepage-related habitats, samples were collected in two regions off Norway: several pockmarks associated with the Storegga Slide including the Nyegga pockmark area, and the active, methane-venting Haakon Mosby Mud Volcano west of the Barents Sea during the Vicking cruise aboard the RV ''PourquoiPas?'' in May-June 2006. Meiofaunal samples at control sites were sampled with a multiple corer, while the other sites were sampled with push cores operated by the ROV Victor6000.The meiofaunal samples were fixed in 4% buffered formaldehyde and washed over a 32 mm-mesh sieve. Metazoan meiofauna were extracted by density gradient centrifugation. All material was fixed with 4% buffered formalin and stained with Rose Bengal. The metazoan meiofauna was sorted out, enumerated and identified down to major taxa under the stereomicroscope. Afterwards, abundances of Nematodes were depth integrated over the top 5 cm to gain individual abundances per 10 cm**2.
Resumo:
Coccolithophores are a group of unicellular phytoplankton species whose ability to calcify has a profound influence on biogeochemical element cycling. Calcification rates are controlled by a large variety of biotic and abiotic factors. Among these factors, carbonate chemistry has gained considerable attention during the last years as coccolithophores have been identified to be particularly sensitive to ocean acidification. Despite intense research in this area, a general concept harmonizing the numerous and sometimes (seemingly) contradictory responses of coccolithophores to changing carbonate chemistry is still lacking to date. Here, we present the "substrate-inhibitor concept" which describes the dependence of calcification rates on carbonate chemistry speciation. It is based on observations that calcification rate scales positively with bicarbonate (HCO3-), the primary substrate for calcification, and carbon dioxide (CO2), which can limit cell growth, whereas it is inhibited by protons (H+). This concept was implemented in a model equation, tested against experimental data, and then applied to understand and reconcile the diverging responses of coccolithophorid calcification rates to ocean acidification obtained in culture experiments. Furthermore, we (i) discuss how other important calcification-influencing factors (e.g. temperature and light) could be implemented in our concept and (ii) embed it in Hutchinson's niche theory, thereby providing a framework for how carbonate chemistry-induced changes in calcification rates could be linked with changing coccolithophore abundance in the oceans. Our results suggest that the projected increase of H+ in the near future (next couple of thousand years), paralleled by only a minor increase of inorganic carbon substrate, could impede calcification rates if coccolithophores are unable to fully adapt. However, if calcium carbonate (CaCO3) sediment dissolution and terrestrial weathering begin to increase the oceans' HCO3- and decrease its H+ concentrations in the far future (10 -100 kyears), coccolithophores could find themselves in carbonate chemistry conditions which may be more favorable for calcification than they were before the Anthropocene.
Resumo:
Coastal upwelling systems account for approximately half of global ocean primary production and contribute disproportionately to biologically driven carbon sequestration. Diatoms, silica-precipitating microalgae, constitute the dominant phytoplankton in these productive regions, and their abundance and assemblage composition in the sedimentary record is considered one of the best proxies for primary production. The study of the sedimentary diatom abundance (SDA) and total organic carbon content (TOC) in the five most important coastal upwelling systems of the modern ocean (Iberia-Canary, Benguela, Peru-Humboldt, California and Somalia-Oman) reveals a global-scale positive relationship between diatom production and organic carbon burial. The analysis of SDA in conjunction with environmental variables of coastal upwelling systems such as upwelling strength, satellite-derived net primary production and surface water nutrient concentrations shows different relations between SDA and primary production on the regional scale. At the global-scale, SDA appears modulated by the capacity of diatoms to take up silicic acid, which ultimately sets an upper limit to global export production in these ocean regions.