999 resultados para Clay, mass netto
Resumo:
We analyze the constraints on the mass and mixing of a superstring-inspired E6 Z' neutral gauge boson that follow from the recent precise Z mass measurements and show that they depend very sensitively on the assumed value of the W mass and also, to a lesser extent, on the top-quark mass.
Resumo:
Report on a special investigation of the Clay Central-Everly Community School District for the period July 1, 2005 through November 30, 2010
Resumo:
Peatlands form in areas where net primary of organic matter production exceeds losses due to the decomposition, leaching or disturbance. Due to their chemical and physical characteristics, bogs can influence water dynamics because they can store large volumes of water in the rainy season and gradually release this water during the other months of the year. In Diamantina, Minas Gerais, Brazil, a peatland in the environmental protection area of Pau-de-Fruta ensures the water supply of 40,000 inhabitants. The hypothesis of this study is that the peat bogs in Pau-de-Fruta act as an environment for carbon storage and a regulator of water flow in the Córrego das Pedras basin. The objective of this study was to estimate the water volume and organic matter mass in this peatland and to study the influence of this environment on the water flow in the Córrego das Pedras basin. The peatland was mapped using 57 transects, at intervals of 100 m. Along all transects, the depth of the peat bog, the Universal Transverse Mercator (UTM) coordinates and altitude were recorded every 20 m and used to calculate the area and volume of the peatland. The water volume was estimated, using a method developed in this study, and the mass of organic matter based on samples from 106 profiles. The peatland covered 81.7 hectares (ha), and stored 497,767 m³ of water, representing 83.7 % of the total volume of the peat bog. The total amount of organic matter (OM) was 45,148 t, corresponding to 552 t ha-1 of OM. The peat bog occupies 11.9 % of the area covered by the Córrego das Pedras basin and stores 77.6 % of the annual water surplus, thus controlling the water flow in the basin and consequently regulating the water course.
Resumo:
A dual-Regge model with a nonlinear proton Regge trajectory in the missing mass (MX2) channel, describing the experimental data on low-mass single diffraction dissociation (SDD), is constructed. Predictions for the LHC energies are given.
Resumo:
The adoption of no-tillage systems (NT) and the maintenance of crop residues on the soil surface result in the long-term increase of carbon (C) in the system, promoting C sequestration and reducing C-CO2 emissions to the atmosphere. The purpose of this study was to evaluate the C sequestration rate and the minimum amount of crop residues required to maintain the dynamic C equilibrium (dC/dt = 0) of two soils (Typic Hapludox) with different textural classes. The experiment was arranged in a 2 x 2 x 2 randomized block factorial design. The following factors were analyzed: (a) two soil types: Typic Hapludox (Oxisol) with medium texture (LVTM) and Oxisol with clay texture (LVTA), (b) two sampling layers (0-5 and 5-20 cm), and (c) two sampling periods (P1 - October 2007; P2 - September 2008). Samples were collected from fields under a long-term (20 years) NT system with the following crop rotations: wheat/soybean/black oat + vetch/maize (LVTM) and wheat/maize/black oat + vetch/soybean (LVTA). The annual C sequestration rates were 0.83 and 0.76 Mg ha-1 for LVTM and LVTA, respectively. The estimates of the minimum amount of crop residues required to maintain a dynamic equilibrium (dC/dt = 0) were 7.13 and 6.53 Mg ha-1 year-1 for LVTM and LVTA, respectively. The C conversion rate in both studied soils was lower than that reported in other studies in the region, resulting in a greater amount of crop residues left on the soil surface.
Resumo:
Sulphur plays an essential role in plants and is one of the main nutrients in several metabolic processes. It has four stable isotopes (32S, 33S, 34S, and 36S) with a natural abundance of 95.00, 0.76, 4.22, and 0.014 in atom %, respectively. A method for isotopic determination of S by isotope-ratio mass spectrometry (IRMS) in soil samples is proposed. The procedure involves the oxidation of organic S to sulphate (S-SO4(2-)), which was determined by dry combustion with alkaline oxidizing agents. The total S-SO4(2-) concentration was determined by turbidimetry and the results showed that the conversion process was adequate. To produce gaseous SO2 gas, BaSO4 was thermally decomposed in a vacuum system at 900 ºC in the presence of NaPO3. The isotope determination of S (atom % 34S atoms) was carried out by isotope ratio mass spectrometry (IRMS). In this work, the labeled material (K2(34)SO4) was used to validate the method of isotopic determination of S; the results were precise and accurate, showing the viability of the proposed method.
Resumo:
We present new geochemical and sedimentological data from marginal marine strata of Penarth Bay, south Wales (UK) to elucidate the origin of widespread but enigmatic concentrations of vertebrate hard parts (bonebeds) in marine successions of Rhaetian age (late Triassic). Sedimentological evidence shows that the phosphatic constituents of the bonebeds were subjected to intense phosphatization in shallow current-dominated settings and subsequently reworked and transported basinward by storms. Interbedded organic-rich strata deposited under quiescent and poorly oxygenated conditions record enhanced phosphorus regeneration from sedimentary organic matter into the water column and probably provided the main source of phosphate required for heavy bonebed clast phosphatization. The stratigraphically limited interval showing evidence for oxygen depletion and accelerated P-cycling coincides with a negative 4% organic carbon isotope excursion, which possibly reflects supra-regional changes in carbon cycling and clearly predates the 'initial isotope excursion' characterizing many Triassic-Jurassic boundary strata. our data indicate that Rhaetian bonebeds are the lithological signature of profound, climatically driven changes in carbon cycling and redox conditions and support the idea of a multi-pulsed environmental crisis at the end of the Triassic, possibly linked to successive episodes of igneous activity in the central Atlantic Magmatic Province.
Resumo:
A simple and sensitive liquid chromatography-electrospray ionization mass spectrometry method was developed for the simultaneous quantification in human plasma of all selective serotonin reuptake inhibitors (citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline) and their main active metabolites (desmethyl-citalopram and norfluoxetine). A stable isotope-labeled internal standard was used for each analyte to compensate for the global method variability, including extraction and ionization variations. After sample (250μl) pre-treatment with acetonitrile (500μl) to precipitate proteins, a fast solid-phase extraction procedure was performed using mixed mode Oasis MCX 96-well plate. Chromatographic separation was achieved in less than 9.0min on a XBridge C18 column (2.1×100mm; 3.5μm) using a gradient of ammonium acetate (pH 8.1; 50mM) and acetonitrile as mobile phase at a flow rate of 0.3ml/min. The method was fully validated according to Société Française des Sciences et Techniques Pharmaceutiques protocols and the latest Food and Drug Administration guidelines. Six point calibration curves were used to cover a large concentration range of 1-500ng/ml for citalopram, desmethyl-citalopram, paroxetine and sertraline, 1-1000ng/ml for fluoxetine and fluvoxamine, and 2-1000ng/ml for norfluoxetine. Good quantitative performances were achieved in terms of trueness (84.2-109.6%), repeatability (0.9-14.6%) and intermediate precision (1.8-18.0%) in the entire assay range including the lower limit of quantification. Internal standard-normalized matrix effects were lower than 13%. The accuracy profiles (total error) were mainly included in the acceptance limits of ±30% for biological samples. The method was successfully applied for routine therapeutic drug monitoring of more than 1600 patient plasma samples over 9 months. The β-expectation tolerance intervals determined during the validation phase were coherent with the results of quality control samples analyzed during routine use. This method is therefore precise and suitable both for therapeutic drug monitoring and pharmacokinetic studies in most clinical laboratories.
Resumo:
A good knowledge of the spatial distribution of clay minerals in the landscape facilitates the understanding of the influence of relief on the content and crystallographic attributes of soil minerals such as goethite, hematite, kaolinite and gibbsite. This study aimed at describing the relationships between the mineral properties of the clay fraction and landscape shapes by determining the mineral properties of goethite, hematite, kaolinite and gibbsite, and assessing their dependence and spatial variability, in two slope curvatures. To this end, two 100 × 100 m grids were used to establish a total of 121 regularly spaced georeferenced sampling nodes 10 m apart. Samples were collected from the layer 0.0-0.2 m and analysed for iron oxides, and kaolinite and gibbsite in the clay fraction. Minerals in the clay fraction were characterized from their X-ray diffraction (XRD) patterns, which were interpreted and used to calculate the width at half height (WHH) and mean crystallite dimension (MCD) of iron oxides, kaolinite, and gibbsite, as well as aluminium substitution and specific surface area (SSA) in hematite and goethite. Additional calculations included the goethite and hematite contents, and the goethite/(goethite+hematite) [Gt/(Gt+Hm)] and kaolinite/(kaolinite+gibbsite) [Kt/(Kt+Gb)] ratios. Mineral properties were established by statistical analysis of the XRD data, and spatial dependence was assessed geostatistically. Mineralogical properties differed significantly between the convex area and concave area. The geostatistical analysis showed a greater number of mineralogical properties with spatial dependence and a higher range in the convex than in the concave area.
Resumo:
Although the influence of clay mineralogy on soil physical properties has been widely studied, spatial relationships between these features in Alfisols have rarely been examined. The purpose of this work was to relate the clay minerals and physical properties of an Alfisol of sandstone origin in two slope curvatures. The crystallographic properties such as mean crystallite size (MCS) and width at half height (WHH) of hematite, goethite, kaolinite and gibbsite; contents of hematite and goethite; aluminium substitution (AS) and specific surface area (SSA) of hematite and goethite; the goethite/(goethite+hematite) and kaolinite/(kaolinite+gibbsite) ratios; and the citrate/bicarbonate/dithionite extractable Fe (Fe d) were correlated with the soil physical properties through Pearson correlation coefficients and cross-semivariograms. The correlations found between aluminium substitution in goethite and the soil physical properties suggest that the degree of crystallinity of this mineral influences soil properties used as soil quality indicators. Thus, goethite with a high aluminium substitution resulted in large aggregate sizes and a high porosity, and also in a low bulk density and soil penetration resistance. The presence of highly crystalline gibbsite resulted in a high density and micropore content, as well as in smaller aggregates. Interpretation of the cross-semivariogram and classification of landscape compartments in terms of the spatial dependence pattern for the relief-dependent physical and mineralogical properties of the soil proved an effective supplementary method for assessing Pearson correlations between the soil physical and mineralogical properties.