888 resultados para Circulating Endothelial Cells
Resumo:
Introdução – Grande parte da população de crianças portadoras de defeitos cardíacos congênitos torna-se criticamente doente durante o primeiro ano de vida e necessita tratamento cirúrgico. No entanto, durante cirurgias cardíacas, ocorre uma resposta inflamatória intensa desencadeada pelo período de circulação extracorpórea (CEC), o que provoca disfunção de órgãos e tecidos. Os neutrófilos assumem um papel importante e complexo neste período, envolvendo a ligação às células endoteliais, ativação e liberação de mediadores inflamatórios. Esse processo é iniciado e mantido através de moléculas de adesão específicas, como a molécula de adesão intercelular-1 (ICAM-1) e a molécula de adesão celular-vascular-1 (VCAM-1). Formas solúveis destas moléculas apresentam variações de seus níveis durante cirurgias cardíacas com uso de CEC. Há poucos dados na literatura relacionados ao comportamento destas moléculas após cirurgia cardíaca com uso de CEC em lactentes, estando seu significado no plasma ainda por ser decifrado. Objetivos – Mensurar os níveis plasmáticos das moléculas de adesão solúveis ICAM-1 e VCAM-1 em condições basais e após exposição ao circuito de CEC em lactentes submetidos à cirurgia cardíaca para correção de defeitos cardíacos congênitos. Comparar os níveis plasmáticos destas moléculas entre pacientes acianóticos e cianóticos. Métodos – Foram estudados 21 lactentes, durante o período de junho de 1998 a março de 1999, submetidos à cirurgia cardíaca com uso de CEC. Foram analisados os níveis plasmáticos da ICAM-1 e da VCAM-1 solúveis pelo método de ELISA, na indução anestésica, ao término da CEC e 8 e 26 horas após o término da CEC. Resultados – As patologias cardíacas congênitas mais comuns foram defeito do septo atrioventricular e tetralogia de Fallot. As médias de idade e de peso foram 6,6 meses e 5,8 Kg. As medianas dos tempos de CEC e de clampeamento de aorta foram, respectivamente, 87 e 53 minutos. Todos os lactentes utilizaram inotrópicos. As medianas dos tempos de intubação e de internação foram 72 horas e 21 dias. A taxa de mortalidade dos pacientes foi de 9,5%. Os níveis basais da ICAM-1 e da VCAM-1 foram significativamente mais elevados do que aqueles considerados normais (P<0,0001). Os níveis da ICAM-1 diminuíram significaticamente ao término da CEC (P<0,001), voltando a aumentar significativamente 8 horas após o término deste período (P<0,005), sem no entanto, alcançar os valores basais 26 horas depois. A VCAM-1 apresentou comportamento semelhante. No entanto, 26 horas após CEC houve diminuição significativa de seus níveis em relação ao valor identificado 8 horas após tal período (P<0,005). Não houve diferença estatisticamente significativa quanto aos valores das moléculas entre pacientes acianóticos e cianóticos (P>0,1). Não houve associação entre os valores das moléculas e as variáveis perioperatórias e os desfechos clínicos. Conclusões – Os níveis plasmáticos das moléculas de adesão solúveis ICAM-1 e VCAM-1 são aumentados em lactentes com cardiopatias congênitas acianóticas e cianóticas no seu estado basal. Os níveis plasmáticos de ICAM-1 e VCAM-1 solúveis variam após exposição ao circuito de CEC em lactentes submetidos à cirurgia cardíaca para correção de cardiopatias congênitas, apresentando um comportamento característico nestes pacientes. Não há diferenças no comportamento das moléculas entre pacientes acianóticos e cianóticos.
Resumo:
Introdução: a incidência dos melanomas permanece em ascensão em diversos países. Os nevos melanocíticos podem ser seus precursores ou marcadores de risco. A radiação ultravioleta é o principal fator de risco ambiental para o seu desenvolvimento. Estudos com nevos irradiados mostram que a radiação ultravioleta B (UVB) pode causar alterações morfológicas e bioquímicas semelhantes às de um melanoma in situ. As metaloproteinases da matriz (MMP) são enzimas proteolíticas e, particularmente, as MMP-2 e –9 (gelatinases A e B) parecem estar associadas à invasão tumoral, à formação de metástases e de neoangiogênese em melanomas. O objetivo do presente estudo é avaliar os efeitos da UVB nas expressões imunoistoquímicas de MMP-2 e –9 nas diferentes linhagens celulares de nevos melanocíticos. Métodos: quarenta e dois nevos melanocíticos tiveram suas metades irradiadas com dose de 2 DEM (dose eritematosa mínima) de UVB e foram excisados uma semana após. As expressões imunoistoquímicas das MMP-2 e -9 foram comparadas, quanto à sua intensidade, por três avaliadores diferentes entre os lados irradiados e não irradiados em queratinócitos, melanócitos de epiderme e derme superior, células endoteliais e fibroblastos. Os dados foram analisados pelo teste t pareado para as diferenças de expressão e pelo ICC para avaliação da homogeneidade entre as respostas dos observadores. Resultados: com relação à expressão imunoistoquímica de MMP-2, todas as linhagens celulares mostraram aumento no lado irradiado, especialmente os melanócitos epidérmicos. Quanto à MMP-9, somente nos queratinócitos, não se observou aumento de expressão do lado irradiado, ficando essa evidente nas demais linhagens celulares avaliadas. Conclusões: A UVB na dose de 2 DEM aumenta a expressão imunoistoquímica das MMP-2 e –9 em quase todas as linhagens celulares dos nevos melanocíticos avaliados até uma semana após a irradiação, com exceção feita queratinócitos, com a MMP-9.
Resumo:
The occurrence of bioactive compounds in marine organisms comes awaking the interest of the pharmaceutical industry. Heparin, a sulfated polysaccharide which presence was already identified in several marine invertebrates, is very attractive due its remarkable functional versatility. Besides to intervene in blood coagulation, this molecule has a great anti-inflammatory potential. However, its strong anticoagulant activity difficult the clinical exploitation of its anti-inflammatory properties. Thus, the aims of this work were to evaluate the effect of a heparin-like compound (heparinoid), isolated from the cephalotorax of the Litopenaeus vannamei shrimp, on the inflammatory response, hemostasia and synthesis of antithrombotic heparan sulfate by endothelial cells, besides studying some aspects concerning its structure. The purified heparinoid was structurally characterized following an analytical boarding, involving electrophoresis and chromatography. The structural analysis have shown that this compound possess a high content of glucuronic acid residues and disulfated disaccharide units. In contrast to mammalian heparin, the heparinoid was incapable to stimulate the synthesis of heparan sulfate by endothelial cells in the tested concentrations, beyond to show reduced anticoagulant activity and hemorrhagic effect. In a model of acute inflammation, the compound isolated from the shrimp reduced more than 50% of the cellular infiltration. Besides reduce the activity of MMP-9 and proMMP-2 of the peritoneal lavage of inflamed animals, the heparinoid also reduced the activity of MMP-9 secreted by activated human leukocytes. These results demonstrate the potential of heparinoid from L. vannamei to intervene in the inflammatory response. For possessing reduced anticoagulant activity and hemorrhagic effect, this compound can serve as a structural model to direct the development of more specific therapeutical agents to the treatment of inflammatory diseases
Resumo:
The present study examines the chemical composition and their effects on free radicals, inflammation, angiogenesis, coagulation, VEGF effects and cellular proliferation of a polysaccharides from alga Sargassum vulgare. The sulfated polysaccharide was extracted from brown seaweed by proteolysis with enzymes maxataze. The presence of proteins and sugars were observed in crude polysaccharides. Fractionation of this crude extract was made with growing concentration of acetone (0.3-1.5 v) and produced four groups of polysaccharides. Anionic polysaccharides from brown seaweed Sargassum vulgare, SV1and PSV1 were fractionated (SV1) and purified (PSV1), and displayed with high total sugars and sulfate content and very low level of protein. This fucan SV1 contains low levels of protein and high carbohydrate and sulfate content. This polysaccharides prolonged activated partial thromboplastin time (aPTT) at 50 μg (>240 s). SV1 was found to have no effect on prothrombin time (PT), corresponding to the extrinsic pathway of coagulation. SV1 exhibits high antithrombotic action in vivo, with a concentration ten times higher than heparin. Polysaccharides from S. vulgare promoted direct inhibition enzymatic activity of thrombin and stimulated enzymatic activity of FXa. SV1 showed optimal inhibitory activity of thrombin (50.2±0.28%) at a concentration of 25 μg/mL. Its antioxidant action on scavenging radicals by DPPH was (22%), indicating the polymer has no cytotoxic action (hemolytic) on ABO and Rh blood types in different erythrocyte groups and displays strong anti-inflammatory action on all concentrations tested in the carrageenan-induced paw edema model, demonstrated by reduced edema and cellular infiltration. Angiogenesis is a dynamic process of proliferation and differentiation. It requires endothelial proliferation, migration, and tube formation. In this context, endothelial cells are a preferred target for several studies and therapies. The antiangiogenic efficacy of polysaccharides was examined in vivo in the chick chorioallantoic membrane (CAM) model by using fertilized eggs. Decreases in the density of the capillaries were assessed and scored. The results showed that SV1 and PSV1 have an inhibitory effect on angiogenesis. These results were also confirmed by inhibition tubulogenesis in rabbit aorta endothelial cell (RAEC) in matrigel. These compounds were assessed in Apoptosis assay (Annexin V - FITC / PI) and cell viability by MTT assay of RAEC. These polysaccharides do not affect the viability and do not have apoptotic or necrotic action. RAEC cell when incubated with SV1 and PSV1showed inhibition of VEGF secretion, observed when compounds were incubated at 25, 50 and 100 μg/μL. The VEGF secretion with the RAEC cell line for 24 h, was more effective for PSV1 at 50 μg/μL(71.4%) than SV1 100 μg/μL (75.9%). SV1 and PSV1 had an antiproliferative action (47%) against tumor cell line HeLa. Our results indicate that these sulfated polysaccharides have antiangiogenic and antitumoral actions
Resumo:
Marine algae are one of the major sources of biologic compounds. In extracellular matrix of these organisms there are sulfated polysaccharides that functions as structural components and provides protection against dehydration. The fraction 1.0 (F1.0) rich in sulfated galactans obtained from red seaweed Hypnea musciformis was physicochemical characterized and evaluated for pharmacologic activity through antioxidant activity, cytotoxic action on erythrocytes, anticoagulant, stimulatory action under antithrombotic heparan sulfate synthesis and their effects on cell proliferation and cycle cell progression. The main components of F1.0 were carbohydrates (49.70 ± 0.10%) and sulfate (44.59 ± 0.015%), presenting phenolic compounds (4.79 ± 0.016%) and low protein contamination (0.92 ± 0.001%). Fraction 1.0 showed polidisperse profile and signs in infrared analysis in 1262, 1074 and 930, 900 and 850 attributed to sulfate esters S=O bond, presence of a 3,6- anidrogalactose C-O bond, non-sulfated β-D-galactose and a C-O-SO4 bond in galactose C4, respectively. The fraction rich in sulfated galactans exhibited strong antioxidant action under lipid peroxidation assay with IC50 of 0.003 mg/mL. Besides the inhibition of hemolysis induced by H2O2 in erythrocytes treated with F1.0, this fraction did not promote significant cytotoxity under erythrocytes membranes. F1.0 exhibited low anticoagulant activity causing moderate direct inhibition of enzimatic activity of thrombin. This fraction promoted stimulation around of 4.6 times on this synthesis of heparan sulfate (HS) by rabbit aortic endothelial cells (RAEC) in culture when was compared with non treated cells. The fraction of this algae displayed antiproliferative action under RAEC cells causing incresing on cell number on S fase, blocking the cycle cell progression. Thus F1.0 presented cytostatic and no cytotoxic action under this cell lineage. These results suggest that F1.0 from H. musciformis have antioxidant potential which is a great effect for a compound used as food and in food industry which could be an alternative to food industry to prevent quality decay of lipid containing food due to lipid peroxidation. These polysaccharides prevent the lipid peroxidation once the fraction in study exhibited strong inhibitory action of this process. Furthermore that F1.0 present strong antithrombotic action promoting the stimulation of antithrombotic HS synthesis by endothelial cells, being important for thrombosis preventing, by its inhibitory action under reactive oxygen species (ROS) in some in vitro methods, being involved in promotion of hypercoagulability state.
Resumo:
Seaweeds are a major source of biologically active compounds . In the extracellular matrix of these organisms are sulfated polysaccharides that functions as structural components preventing it against dehydration. The fraction 0.9 (FucB) rich in sulfated fucans obtained from brown seaweed Dictyota menstrualis was chemical characterized and evaluated for pharmacological activity by testing anticoagulant activity, stimulatory action on the synthesis of an antithrombotic heparan sulfate, antioxidant activity and its effects in cell proliferation. The main components were FucB carbohydrates (49.80 ± 0.10 %) and sulfate (42.30 ± 0.015 %), with phenolic compounds ( 3.86 ± 0.016 %) and low protein contamination ( 0.58 ± 0.001 % ) . FucB showed polydisperse profile and analysis of signals in the infrared at 1262, 1074 and 930 cm -1 and 840 assigned to S = O bonds sulfate esters , CO bond presence of 3,6- anhydrogalactose , β -D- galactose non- sulfated sulfate and the axial position of fucose C4 , respectively. FucB exhibited moderate anticoagulant activity , the polysaccharides prolonged time (aPTT ) 200 ug ( > 90s ) partial thromboplastin FucB no effect on prothrombin time (PT), which corresponds to the extrinsic pathway of coagulation was observed. This stimulation promoted fraction of about 3.6 times the synthesis of heparan sulfate (HS) by endothelial cells of the rabbit aorta ( RAEC ) in culture compared with cells not treated with FucB . This has also been shown to compete for the binding site with heparin. The rich fraction sulfated fucans exhibited strong antioxidant activity assays on total antioxidant (109.7 and 89.5 % compared with BHT and ascorbic acid standards ) , reducing power ( 71 % compared to ascorbic acid ) and ferric chelation ( 71 , comparing with 5 % ascorbic acid). The fraction of algae showed cytostatic activity on the RAEC cells revealed that the increase of the synthesis of heparan sulfate is not related to proliferation. FucB showed antiproliferative action on cell lines modified as Hela and Hep G2 by MTT assay . These results suggest that FucB Dictyota menstrualis have anticoagulant , antithrombotic , antioxidant potential as well as a possible antitumor action, promoting the stimulation of the synthesis of antithrombotic HS by endothelial cells and is useful in the prevention of thrombosis, also due to its inhibitory action on species reactive oxygen ( ROS ) in some in vitro systems , being involved in promoting a hypercoagulable state
Resumo:
Fucan is a term used to denominate a family of sulfated L-fucose-rich polysaccharides. The brown alga Spatoglossum schröederi (Dictyotaceae) has three heterofucans namely fucan A, B and C. The 21 kDa fucan A is composed of a core of β (1-3) glucuronic acid-containing oligosaccharide of 4.5 kDa with branches at C4 of fucose chains α (1-3) linked. The fucose is mostly substituted at C4 with a sulfate group and at C2 with chains of β (1-4) xylose. This fucan has neither anticoagulant (from from 0.1 to 100µg) nor hemorrhagic activities (from 50 to 800 µg/mL). The antithrombotic test in vivo showed the fucan A has no activity in any of the concentrations (from 0.2 to 20µg/g/day) tested 1h after polysaccharide administration. However, when fucan A was injected endovenously 24h before the ligature of the venae cavae, we observed a dose-dependent effect, reaching saturation at around 20g/g of rat weight. In addition, this effect is also time-dependent, reaching saturation around 16h after fucan administration. In addition, regardless of administration pathway, fucan A displayed antithrombotic action. The exception was the oral pathway. Of particular importance was the finding that fucan A stimulates the synthesis of an antithrombotic heparan sulfate from endothelial cells like heparin. The hypothesis has been raised that in vivo antithrombotic activity of fucan A is related to the increased production this heparan. Taken together with the fact that the compound is practically devoid of anticoagulant and hemorrhagic activity suggests that it may be an ideal antithrombotic agent in vivo
Resumo:
Relata-se o caso de um cão, macho, da raça Fila Brasileiro, com nove anos de idade, acometido por neoformação tecidual na membrana nictitante do olho direito, com cerca de quatro meses de evolução. Realizou-se exame oftálmico rotineiro, a partir do qual se notaram hiperemia e edema conjuntivais, secreção ocular serossangüinolenta e neoformação saliente na conjuntiva da membrana nictitante. Realizou-se a exérese cirúrgica da neoformação. À histopatologia, encontraram-se células endoteliais pouco diferenciadas e pleomórficas que originavam intensa neoformação vascular, compatíveis com hemangiossarcoma da membrana nictitante.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Low level laser therapy (LLLT) is known for its positive results but studies on the biological and biomodulator characteristics of the effects produced in the skeletal muscle are Still lacking. In this Study the effects of two laser dosages, 5 or 10 J/cm(2), on the lesioned tibial muscle were compared. Gerbils previously lesioned by 100 g load impact were divided into three groups: GI (n = 5) controls, lesion non-irradiated; GII (n = 5), lesion irradiated with 5 J/Cm(2) and GIII (n = 5), lesion irradiated with 10 J/cm(2), and treated for 7 consecutive days with a laser He-Ne (lambda = 633 rim). After intracardiac perfusion, the muscles were dissected and reduced to small fragments, post-fixed in 1% osmium tetroxide, dehydrated in increasing alcohol concentrations, treated with propylene oxide and embedded in Spurr resin at 60 degrees C. Ultrafine Cuts examined on a transmission electron microscope (Jeol 1010) revealed in the control GI group a large number of altered Muscle fibers with degenerating mitochondria, intercellular substance containing degenerating cell fragments and budding blood capillaries with Underdeveloped endothelial cells. However, groups GII and GIII showed muscle fibers with few altered myofibrils, regularly contoured mitochondria, ample intermembrane spaces and dilated mitochondrial crests. The clean intercellular Substance showed numerous collagen fibers and capillaries with multiple abluminal processes, intraluminal protrusions and several pinocytic vesicles in endothelial cells. it was concluded that laser dosages of 5 or 10 J/cm(2) delivered by laser He-Ne (lambda = 633 rim) during 7 consecutive days increase mitochondrial activity in muscular fibers, activate fibroblasts and macrophages and stimulate angiogenesis, thus suggesting effectivity of laser therapy tinder these experimental conditions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Periodontal disease is a complex inflammatory and infectious condition that immune host, front of the microbial aggressions, can lead to disease progression, resulting in tissue destruction. The tissue damage induces the release of regulatory molecules, which protective roles and / or destructive, including proteins VEGF (vascular endothelial growth factor vascular) and HIF-1 α (hypoxia-induced factor α -1). Thus, this study investigated, quantitatively and comparatively, the immunohistochemical expression of VEGF (vascular endothelial growth factor) and HIF-1 α (hypoxia induced factor 1-α), proteins involved in inflammation, angiogenesis and hypoxia, in human gingival tissues. Therefore, 75 samples of gingival tissues were examined. Thirty samples were chronic periodontitis, 30 with chronic gingivitis and 15 healthy gingival. After sections analysis, positives and negatives inflammatory and endothelial cells in the connective tissue were counted and converted into percentage. Data were statistically analyzed using Kruskal-Wallis test and Spearman correlation. The results showed that both proteins marked. It was observed higher immunoreactivity for HIF-1 α at chronic gingivitis and periodontitis specimens compared to healthy sites, however, no statistically significant differences were observed among them (p>0.05). The VEGF immunostaining showed similarity among the cases of periodontitis, gingivitis and healthy gingiva. Moderate and positive correlation statistically significant differences were verified for the expressions of VEGF and HIF-1α in gingival health (r = 0,529, p = 0.04). Thus, it can be conclude that possibly the route of HIF-1 α, is activated in periodontal disease may have involvement of the protein in pathogenesis and progression of disease, and that activation of VEGF, can be in addition to being triggered transcription by HIF-1 α may be also influenced by other additional factors such as the action of periodontal microorganisms endotoxins
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The low level laser therapy (LLLT) has shown to be effective in promoting the proliferation of different cells in vitro, including keratinocytes, osteoblasts, endothelial cells and stem cells. It has been speculated that the biostimulatory effect of LLLT could cause undesirable enhancement of tumor growth in neoplastic diseases, since the malignant cells are more susceptible to proliferative stimuli. Within this context, this study evaluated the effect of LLLT on epidermoid carcinoma of the tongue cell line (SCC25) proliferation and invasion. Cultured cells were irradiated with an InGaAIP diode laser, 660nm, 30mW using two energy densities (0.5J/cm2 and 1.0J/cm2). Proliferative activity was assessed through trypan blue staining method and through cell cycle analysis using flow cytometry. The invasive potential was measured through cell invasion assay using matrigel. Cyclin D1, E-cadherin, -catenin and MMP-9 expressions were analyzed by immunofluorescence and flow cytometry and related to the investigated biological activities. Proliferation curve demonstrated that SCC25 irradiated with 1.0J/cm2 had the highest proliferative rate when compared to the control group and the group irradiated with 0.5J/cm2 (p<0.05). LLLT affected cell cycle distribution and energy density of 1.0 J/cm2 promoted a higher percentage of cells in S/G2/M phases, with statistically significant differences at 24h interval (p<0.05). LLLT, mainly with 1.0J/cm2, revealed significantly higher potential for invasion and influenced the expression of cyclin D1, E-cadherin, -catenin and MMP-9, promoting the malignant phenotype. In conclusion, our results indicate that LLLT has an important stimulatory effect on proliferation and invasion of SCC25 cells, likely due to altered expression of proteins associated with these processes