1000 resultados para Cibicidoides mundulus, d13C


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxygen and carbon isotope records from benthic and planktonic foraminifera are presented for the past 35,000 years in the northeastern Atlantic. The results support the idea that the last deglaci-ation took place in two major steps (Duplessy et al., 1981 doi:10.1016/0031-0182(81)90096-1; Mix and Ruddiman, 1985 doi:10.1016/0277-3791(85)90015-0; Ruddiman, 1987; Fairbanks, 1989 doi:10.1038/342637a0), and conflict with theories calling for a strong reduction in North Atlantic deep-water formation to explain the abrupt cooling of the Younger Dryas cold period (Broecker et al., 1985 doi:10.1038/315021a0; Rind et al., 1986 doi:10.1007/BF01277044; Broecker et al., 1988 doi:10.1029/PA003i001p00001).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Benthic foraminiferal carbon isotope records from a suite of drill sites in the North Atlantic are used to trace variations in the relative strengths of Lower North Atlantic Deep Water (LNADW), Upper North Atlantic Deep Water (UNADW), and Southern Ocean Water (SOW) over the past 1 Myr. During glacial intervals, significant increases in intermediate-to-deep delta13C gradients (commonly reaching >1.2?) are consistent with changes in deep water circulation and associated chemical stratification. Bathymetric delta13C gradients covary with benthic foraminiferal delta18O and covary inversely with Vostok CO2, in agreement with chemical stratification as a driver of atmospheric CO2 changes. Three deep circulation indices based on delta13C show a phasing similar to North Atlantic sea surface temperatures, consistent with a Northern Hemisphere control of NADW/SOW variations. However, lags in the precession band indicate that factors other than deep water circulation control ice volume variations at least in this band.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changes in the intermediate water structure of the North Atlantic were reconstructed using benthic foraminiferal delta13C at Ocean Drilling Program (ODP) site 982 for the past 1.0 Myr. During most terminations of the late Pleistocene, melting of icebergs and low-salinity surface waters caused production of Glacial North Atlantic Intermediate Water to cease, resulting in decreased ventilation of the middepth North Atlantic. Poor ventilation of intermediate water masses lasted well into some interglacial stages until upper North Atlantic Deep Water (NADW) production resumed under full interglacial conditions. The magnitude of benthic delta13C minima and ice-rafted debris maxima at terminations at site 982 generally match the degree of glacial suppression of NADW inferred from site 607. These processes may be related and controlled by the spatial and seasonal extent of sea ice cover during glaciations in the Nordic Seas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have integrated Oligocene to lower upper Miocene planktonic foraminifer biostratigraphy with benthic foraminifer (Cibicidoides spp.) stable isotope records for two sites drilled on opposite sides of the Sierra Leone Rise in the eastern equatorial Atlantic Ocean. Deep Sea Drilling Project Site 366 (2853 m present water depth; 2200-2800 m paleodepth) recovered an Oligocene to upper Miocene record with a minor unconformity in the "middle" Oligocene and a condensed middle Miocene section. Ocean Drilling Program Site 667 (3529 m present depth; 3000-3500 m paleodepth) recovered an apparently continuous "middle" Oligocene to lower middle Miocene record and a similar condensed middle Miocene section. The Oligocene to lower Miocene sections were deposited at similar sedimentation rates (~11-16 m/m.y.). Stable isotope stratigraphy proved to be useful in establishing intra- and interbasinal correlations. In addition to the well-known earliest Oligocene and middle Miocene S180 increases, a distinct d18O increase occurred near the Oligocene/Miocene boundary. Carbon isotope variations provide similar potential for improving correlations; for example, a d13C increase occurred near the Oligocene/Miocene boundary in concert with increased d18O values. There was little d13C difference between the western Atlantic and eastern Atlantic basins during the late Oligocene and most of the middle Miocene; in contrast, eastern basin d13C values were slightly lower than those in the western basins during the earliest Oligocene (about 35-33 Ma) and early Miocene (about 22-18 Ma).