957 resultados para Chile Power Food
Resumo:
The concept of food security is often anchored in popular understandings of the challenge to produce and supply enough food. However, decades of policies for intensive agriculture have not alleviated hunger and malnutrition, with an absence of food security featuring in both economically developing and developed nations. Despite perceptions that the economic growth in advanced, capitalist societies will ensure freedom from hunger, this is not universal across so-called ‘wealthy nations’. To explore the dynamics of food security in economically developed countries, this paper considers institutional approaches to domestic food security primarily through responses to poverty and welfare entitlements, and, secondarily, through food relief. Through the lens of social entitlements to food and their formation under various expressions of welfare capitalism, we highlight how the specific institutional settings of two economically developed nations, Australia and Norway, respond to uncertain or insufficient access to food. Whilst Norway's political agenda on agricultural support, food pricing regulation and universal social security support offers a robust, although indirect, safety net in ensuring entitlements to food, Australia's neoliberal trajectory means that approaches to food security are ad hoc and rely on a combination of self-help, charitable and market responses. Despite its extensive food production Australia appears less capable of ensuring food security for all its inhabitants compared to the highly import-dependent Norway.
Resumo:
We compared perception of family functioning in a sample (N = 1,496) of Aymara and non-Aymara parents and children living in Arica, Chile. The children were aged from 9 to 15 years and were recruited from the 5th to 8th grades of 9 elementary schools (4 public, 5 government-subsidized private schools) serving lower socioeconomic areas. Participants completed the Family Functioning Test (FF-SIL), which consists of 14 events or characteristics that may occur in a family. The results showed that parents and children from the Aymara group recorded lower scores for their perception of family functioning than did the non-Aymara group. Addressing this issue may be important in the prevention of psychological problems in these families.
Resumo:
This thesis investigates China's film internationalism and coproduction strategy based on three cases: Hong Kong and China film coproduction; US and China without any state-level agreements; Australia and China based on an official coproduction treaty. It investigates the evolution of coproduction in the film industry, the process of coproduction, foreign film companies' strategies of adjustment to state policies, and the culture and complexities that hinder coproduction. It surveys the current environment for China film coproduction and investigates the degree to which film coproduction has been - to this stage - a contributor to China's global cultural presence – its soft power.
Resumo:
Food-borne pathogens are present in normal healthy pigs and thus are also present in pig wastes and by-products. The presence of these pathogens can be viewed negatively (i.e. 'a spoke in the wheel') or as simply another issue that requires the adoption of appropriate guidelines and management procedures. A key component in the development of appropriate, effective guidelines and management practices is a solid basis of knowledge on which pathogens are present as well as the levels of these pathogens. This paper reviews Australian Pork Limited (APL) funded projects carried out in our laboratories that have provided a solid base of Australian data for the pig industry. These data will ensure that pathogens are not 'a spoke in the wheel' but rather an issue - like many others that confront the industry - that can be managed to ensure that there is no unacceptable risk to either public health or the environment.
Resumo:
Much research in understanding plant diseases has been undertaken, but there has been insufficient attention given to dealing with coordinated approaches to preventing and managing diseases. A global management approach is essential to the long-term sustainability of banana production. This approach would involve coordinated surveys, capacity building in developing countries, development of disease outbreak contingency plans and coordinated quarantine awareness, including on-line training in impact risk assessment and web-based diagnostic software. Free movement of banana plants and products between some banana-producing countries is causing significant pressure on the ability to manage diseases in banana. The rapid spread of Fusarium oxysporum f. sp. cubense 'tropical race 4' in Asia, bacterial wilts in Africa and Asia and black leaf streak [Mycosphaerella fijiensis] in Brazil and elsewhere are cases in point. The impact of these diseases is devastating, severely cutting family incomes and jeopardising food security around the globe. Agreements urgently need to be reached between governments to halt the movement of banana plants and products between banana-producing countries before it is too late and global food security is irreparably harmed. Black leaf streak, arguably the most serious banana disease, has become extremely difficult to control in commercial plantations in various parts of the world. Sometimes in excess of 50 fungicide sprays have to be applied each year. Disease eradication and effective disease control is not possible because there is no control of disease inoculum in non-commercial plantings in these locations. Additionally, there have been enormous sums of money invested in international banana breeding programmes over many years only to see the value of hybrid products lost too soon. 'Goldfinger' (AAAB, syn. 'FHIA-01'), for example, has recently been observed severely affected by black leaf streak in Samoa. Resistant cultivars alone cannot be relied upon in the fight against this disease. Real progress in control may only come when the local communities are engaged and become actively involved in regional programmes. Global recommendations are long overdue and urgently needed to help ensure the long-term sustainable utilisation of the products of the breeding programmes.
Resumo:
The critical stream power criterion may be used to describe the incipient motion of cohesionless particles of plane sediment beds. The governing equation relating ``critical stream power'' to ``shear Reynolds number'' is developed by using the present experimental data as well as the data from several other sources. Simultaneously, a resistance equation, relating the ``particle Reynolds number'' to the``shear Reynolds number'' is developed for plane sediment beds in wide channels with little or no transport. By making use of these relations, a procedure is developed to design plane sediment beds such that any two of the four design variables, including particle size, energy/friction slope, flow depth, and discharge per unit width in the channel should be known to predict the remaining two variables. Finally, a straightforward design procedure using design tables/design curves and analytical methods is presented to solve six possible design problems.
Resumo:
This article presents an overview of pedestrian environment in Kathmandu, Nepal to briefly discuss some of the emerging problems. It argues that pedestrian ranks lowest in the food chain of Kathmandu's urban jungle as there is too little concern shown by the government agencies in improving the quality of the street space for walkers.
Resumo:
Digital Image
Resumo:
Introduction and Objectives Joint moments and joint powers during gait are widely used to determine the effects of rehabilitation programs as well as prosthetic fitting. Following the definition of power (dot product of joint moment and joint angular velocity) it has been previously proposed to analyse the 3D angle between both vectors, αMw. Basically, joint power is maximised when both vectors are parallel and cancelled when both vectors are orthogonal. In other words, αMw < 60° reveals a propulsion configuration (more than 50% of the moment contribute to positive power) while αMw > 120° reveals a resistance configuration (more than 50% of the moment contribute to negative power). A stabilisation configuration (less than 50% of the moment contribute to power) corresponds to 60° < αMw < 120°. Previous studies demonstrated that hip joints of able-bodied adults (AB) are mainly in a stabilisation configuration (αMw about 90°) during the stance phase of gait. [1, 2] Individuals with transfemoral amputation (TFA) need to maximise joint power at the hip while controlling the prosthetic knee during stance. Therefore, we tested the hypothesis that TFAs should adopt a strategy that is different from a continuous stabilisation. The objective of this study was to compute joint power and αMw for TFA and to compare them with AB. Methods Three trials of walking at self-selected speed were analysed for 8 TFAs (7 males and 1 female, 46±10 years old, 1.78±0.08 m 82±13 kg) and 8 ABs (males, 25±3 years old, 1.75±0.04, m 67±6 kg). The joint moments are computed from a motion analysis system (Qualisys, Goteborg, Sweden) and a multi-axial transducer (JR3, Woodland, USA) mounted above the prosthetic knee for TFAs and from a motion analysis system (Motion Analysis, Santa Rosa, USA) and force plates (Bertec, Columbus, USA) for ABs. The TFAs were fitted with an OPRA (Integrum, AB, Gothengurg, Sweden) osseointegrated implant system and their prosthetic designs include pneumatic, hydraulic and microprocessor knees. Previous studies showed that the inverse dynamics computed from the multi-axial transducer is the proper method considering the absorption at the foot and resistance at the knee. Results The peak of positive power at loading response (H1) was earlier and lower for TFA compared to AB. Although the joint power is lower, the 3D angle between joint moment and joint angular velocity, αMw, reveals an obvious propulsion configuration (mean αMw about 20°) for TFA compared to a stabilisation configuration (mean αMw about 70°) for AB. The peaks of negative power at midstance (H2) and of positive power at preswing / initial swing (H3) occurred later, lower and longer for TFA compared to AB. Again, the joint powers are lower for TFA but, in this case, αMw is almost comparable (with a time lag), demonstrating a stabilisation (almost a resistance for TFA, mean αMw about 120°) and a propulsion configuration, respectively. The swing phase is not analysed in the present study. Conclusion The analysis of hip joint power may indicate that TFAs demonstrated less propulsion and resistance than ABs during the stance phase of gait. This is true from a quantitative point of view. On the contrary, the 3D angle between joint moment and joint angular velocity, αMw, reveals that TFAs have a remarkable propulsion strategy at loading response and almost a resistance strategy at midstance while ABs adopted a stabilisation strategy. The propulsion configuration, with αMw close to 0°, seems to aim at maximising the positive joint power. The configuration close to resistance, with αMw far from 180°, might aim at unlocking the prosthetic knee before swing while minimising the negative power. This analysis of both joint power and 3D angle between the joint moment and the joint angular velocity provides complementary insights into the gait strategies of TFA that can be used to support evidence-based rehabilitation and fitting of prosthetic components.
Resumo:
Loading margin sensitivity (LMS) has been widely used in applications in the realm of voltage stability assessment and control. Typically, LMS is derived based on system equilibrium equations near bifurcation and therefore requires full detailed system model and significant computation effort. Availability of phasor measurement units (PMUs) due to the recent development of wide-area monitoring system (WAMS) provides an alternative computation-friendly approach for calculating LMS. With such motivation, this work proposes measurement-based wide-area loading margin sensitivity (WALMS) in bulk power systems. The proposed sensitivity, with its simplicity, has great potential to be embedded in real-time applications. Moreover, the calculation of the WALMS is not limited to low voltage near bifurcation point. A case study on IEEE 39-bus system verifies the proposed sensitivity. Finally, a voltage control scenario demonstrates the potential application of the WALMS.
Resumo:
Electromechanical wave propagation characterizes the first-swing dynamic response in a spatially delayed manner. This paper investigates the characteristics of this phenomenon in two-dimensional and one-dimensional power systems. In 2-D systems, the wave front expands as a ripple in a pond. In 1-D systems, the wave front is more concentrated, retains most of its magnitude, and travels like a pulse on a string. This large wave front is more impactful upon any weak link and easily causes transient instability in 1-D systems. The initial disturbance injects both high and low frequency components, but the lumped nature of realistic systems only permits the lower frequency components to propagate through. The kinetic energy split at a junction is equal to the generator inertia ratio in each branch in an idealized continuum system. This prediction is approximately valid in a realistic power system. These insights can enhance understanding and control of the traveling waves.