936 resultados para Chemical etching method combining static etching and dynamic etching
Resumo:
Secondary accident statistics can be useful for studying the impact of traffic incident management strategies. An easy-to-implement methodology is presented for classifying secondary accidents using data fusion of a police accident database with intranet incident reports. A current method for classifying secondary accidents uses a static threshold that represents the spatial and temporal region of influence of the primary accident, such as two miles and one hour. An accident is considered secondary if it occurs upstream from the primary accident and is within the duration and queue of the primary accident. However, using the static threshold may result in both false positives and negatives because accident queues are constantly varying. The methodology presented in this report seeks to improve upon this existing method by making the threshold dynamic. An incident progression curve is used to mark the end of the queue throughout the entire incident. Four steps in the development of incident progression curves are described. Step one is the processing of intranet incident reports. Step two is the filling in of incomplete incident reports. Step three is the nonlinear regression of incident progression curves. Step four is the merging of individual incident progression curves into one master curve. To illustrate this methodology, 5,514 accidents from Missouri freeways were analyzed. The results show that secondary accidents identified by dynamic versus static thresholds can differ by more than 30%.
Resumo:
: Objectives Physicochemical incompatibilities between intravenous drugs are a recurrent problem in intensive care units. The present study was aimed at investigating the physical compatibility of remifentanil and sufentanil with other drugs (insulin, midazolam, propofol, potassium chloride, magnesium sulfate, furosemide, heparin, monobasic potassium phosphate) that are frequently administered together intravenously. In addition, the physicochemical compatibility of three common associations of drugs was evaluated in glass tube tests and during dynamic simulated Y site administrations (remifentanil-insulin-midazolam; remifentanil-insulin-propofol; sufentanil-insulin-midazolam). Methods Physical compatibility was verified by visual inspection of the various mixtures (two, three or four drugs) in glass tubes and by pH determination of the mixtures collected during simulated Y site administrations. Solutions were considered as compatible in the absence of any visual change in the solution and of any significant variation in pH value. In addition, chemical stability was checked during in vitro dynamic simulations. The solutions were prepared in 50 ml syringes, placed on syringe pumps and connected to a Swan-Ganz catheter; the liquid collected at the tip was assayed by high performance liquid chromatography. Results In the visual examinations, only the associations of remifentanil and furosemide were incompatible. The three assayed associations were compatible in the tested proportion range over 24 h. Conclusions Remifentanil was physically compatible with the tested drugs, except for furosemide (Lasix; Sanofi-Aventis, 250 mg/25 ml) and physicochemically compatible with insulin and midazolam and insulin and propofol. Sufentanil was physically compatible with all tested drugs and physicochemically compatible with insulin and midazolam
Resumo:
The very diverse social systems of sweat bees make them interesting models to study social evolution. Here we focus on the dispersal behaviour and social organization of Halictus scabiosae, a common yet poorly known species of Europe. By combining field observations and genetic data, we show that females have multiple reproductive strategies, which generates a large diversity in the social structure of nests. A detailed microsatellite analysis of 60 nests revealed that 55% of the nests contained the offspring of a single female, whereas the rest had more complex social structures, with three clear cases of multiple females reproducing in the same nest and frequent occurrence of unrelated individuals. Drifting among nests was surprisingly common, as 16% of the 122 nests in the overall sample and 44% of the nests with complex social structure contained females that had genotypes consistent with being full-sisters of females sampled in other nests of the population. Drifters originated from nests with an above-average productivity and were unrelated to their nestmates, suggesting that drifting might be a strategy to avoid competition among related females. The sex-specific comparison of genetic differentiation indicated that dispersal was male-biased, which would reinforce local resource competition among females. The pattern of genetic differentiation among populations was consistent with a dynamic process of patch colonization and extinction, as expected from the unstable, anthropogenic habitat of this species. Overall, our data show that H. scabiosae varies greatly in dispersal behaviour and social organization. The surprisingly high frequency of drifters echoes recent findings in wasps and bees, calling for further investigation of the adaptive basis of drifting in the social insects.
Resumo:
BACKGROUND: Living in a multisensory world entails the continuous sensory processing of environmental information in order to enact appropriate motor routines. The interaction between our body and our brain is the crucial factor for achieving such sensorimotor integration ability. Several clinical conditions dramatically affect the constant body-brain exchange, but the latest developments in biomedical engineering provide promising solutions for overcoming this communication breakdown. NEW METHOD: The ultimate technological developments succeeded in transforming neuronal electrical activity into computational input for robotic devices, giving birth to the era of the so-called brain-machine interfaces. Combining rehabilitation robotics and experimental neuroscience the rise of brain-machine interfaces into clinical protocols provided the technological solution for bypassing the neural disconnection and restore sensorimotor function. RESULTS: Based on these advances, the recovery of sensorimotor functionality is progressively becoming a concrete reality. However, despite the success of several recent techniques, some open issues still need to be addressed. COMPARISON WITH EXISTING METHOD(S): Typical interventions for sensorimotor deficits include pharmaceutical treatments and manual/robotic assistance in passive movements. These procedures achieve symptoms relief but their applicability to more severe disconnection pathologies is limited (e.g. spinal cord injury or amputation). CONCLUSIONS: Here we review how state-of-the-art solutions in biomedical engineering are continuously increasing expectances in sensorimotor rehabilitation, as well as the current challenges especially with regards to the translation of the signals from brain-machine interfaces into sensory feedback and the incorporation of brain-machine interfaces into daily activities.
Resumo:
The genetic determinants and phenotypic traits which make a Staphylococcus aureus strain a successful colonizer are largely unknown. The genetic diversity and population structure of 133 S. aureus isolates from healthy, generally risk-free adult carriers were investigated using four different typing methods: multilocus sequence typing (MLST), amplified fragment length polymorphism analysis (AFLP), double-locus sequence typing (DLST), and spa typing were compared. Carriage isolates displayed great genetic diversity which could only be revealed fully by DLST. Results of AFLP and MLST were highly concordant in the delineation of genotypic clusters of closely related isolates, roughly equivalent to clonal complexes. spa typing and DLST provided considerably less phylogenetic information. The resolution of spa typing was similar to that of AFLP and inferior to that of DLST. AFLP proved to be the most universal method, combining a phylogeny-building capacity similar to that of MLST with a much higher resolution. However, it had a lower reproducibility than sequencing-based MLST, DLST, and spa typing. We found two cases of methicillin-resistant S. aureus colonization, both of which were most likely associated with employment at a health service. Of 21 genotypic clusters detected, 2 were most prevalent: cluster 45 and cluster 30 each colonized 24% of the carrier population. The number of bacteria found in nasal samples varied significantly among the clusters, but the most prevalent clusters were not particularly numerous in the nasal samples. We did not find much evidence that genotypic clusters were associated with different carrier characteristics, such as age, sex, medical conditions, or antibiotic use. This may provide empirical support for the idea that genetic clusters in bacteria are maintained in the absence of adaptation to different niches. Alternatively, carrier characteristics other than those evaluated here or factors other than human hosts may exert selective pressure maintaining genotypic clusters.
Resumo:
The hybridoma cell line ZAC3 expresses Vibrio cholerae lipopolysaccharide (LPS)-specific mouse IgA molecules as a heterogeneous population of monomeric (IgAm), dimeric (IgAd), and polymeric (IgAp) forms. We describe a gentle method combining ultrafiltration, ion-exchange chromatography, and size exclusion chromatography for the simultaneous and qualitative separation of the three molecular forms. Milligram quantities of purified IgA molecules were recovered allowing for direct comparison of the biological properties of the three forms. LPS binding specificity was tested after purification; IgAd and IgAp were found to bind strongly to LPS whereas IgAm did not. Secretory IgA (sIgA) could be reconstituted in vitro by combining recombinant secretory component (rSC) and purified IgAd or IgAp, but not IgAm. Surface plasmon resonance-based binding experiments using LPS monolayers indicated that purified reconstituted sIgA and IgA molecules recognize LPS with identical affinity (KA 1.0 x 10(8)M-1). Thus, this very sensitive assay provides the first evidence that the function of SC in sIgA complex is not to modify the affinity for the antigen. KA falls to 6.6 x 10(5) M-1 when measured by calorimetry using detergent-solubilized LPS and IgA, suggesting that the LPS environment is critical for recognition by the antibody.
Resumo:
Nitrogen doped silicon (NIDOS) films have been deposited by low-pressure chemical vapor deposition from silane SiH4 and ammonia NH3 at high temperature (750°C) and the influences of the NH3/SiH4 gas ratio on the films deposition rate, refractive index, stoichiometry, microstructure, electrical conductivity, and thermomechanical stress are studied. The chemical species derived from silylene SiH2 into the gaseous phase are shown to be responsible for the deposition of NIDOS and/or (silicon rich) silicon nitride. The competition between these two deposition phenomena leads finally to very high deposition rates (100 nm/min) for low NH3/SiH4 gas ratio (R¿0.1). Moreover, complex variations of NIDOS film properties are evidenced and related to the dual behavior of the nitrogen atom into silicon, either n-type substitutional impurity or insulative intersticial impurity, according to the Si¿N atomic bound. Finally, the use of NIDOS deposition for the realization of microelectromechanical systems is investigated.
Resumo:
This manual summarizes the roadside tree and brush control methods used by all of Iowa's 99 counties. It is based on interviews conducted in Spring 2002 with county engineers, roadside managers and others. The target audience of this manual is the novice county engineer or roadside manager. Iowa law is nearly silent on roadside tree and brush control, so individual counties have been left to decide on the level of control they want to achieve and maintain. Different solutions have been developed but the goal of every county remains the same: to provide safe roads for the traveling public. Counties in eastern and southern Iowa appear to face the greatest brush control challenge. Most control efforts can be divided into two categories: mechanical and chemical. Mechanical control includes cutting tools and supporting equipment. A chain saw is the most widely used cutting tool. Tractor mounted boom mowers and brush cutters are used to prune miles of brush but have significant safety and aesthetic limitations and boom mowers are easily broken by inexperienced operators. The advent of tree shears and hydraulic thumbs offer unprecedented versatility. Bulldozers are often considered a method of last resort since they reduce large areas to bare ground. Any chipper that violently grabs brush should not be used. Chemical control is the application of herbicide to different parts of a plant: foliar spray is applied to leaves; basal bark spray is applied to the tree trunk; a cut stump treatment is applied to the cambium ring of a cut surface. There is reluctance by many to apply herbicide into the air due to drift concerns. One-third of Iowa counties do not use foliar spray. By contrast, several accepted control methods are directed toward the ground. Freshly cut stumps should be treated to prevent resprouting. Basal bark spray is highly effective in sensitive areas such as near houses. Interest in chemical control is slowly increasing as herbicides and application methods are refined. Fall burning, a third, distinctly separate technique is underused as a brush control method and can be effective if timed correctly. In all, control methods tend to reflect agricultural patterns in a county. The use of chain saws and foliar sprays tends to increase in counties where row crops predominate, and boom mowing tends to increase in counties where grassland predominates. For counties with light to moderate roadside brush, rotational maintenance is the key to effective control. The most comprehensive approach to control is to implement an integrated roadside vegetation management (IRVM) program. An IRVM program is usually directed by a Roadside Manager whose duties may be shared with another position. Funding for control programs comes from the Rural Services Basic portion of a county's budget. The average annual county brush control budget is about $76,000. That figure is thought not to include shared expenses such as fuel and buildings. Start up costs for an IRVM program are less if an existing control program is converted. In addition, IRVM budgets from three different northeastern Iowa counties are offered for comparison in this manual. The manual also includes a chapter on temporary traffic control in rural work zones, a summary of the Iowa Code as it relates to brush control, and rules on avoiding seasonal disturbance of the endangered Indiana bat. Appendices summarize survey and forest cover data, an equipment inventory, sample forms for record keeping, a sample brush control policy, a few legal opinions, a literature search, and a glossary.
Resumo:
In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured load displacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.
Resumo:
Over the past few decades, Fourier transform infrared (FTIR) spectroscopy coupled to microscopy has been recognized as an emerging and potentially powerful tool in cancer research and diagnosis. For this purpose, histological analyses performed by pathologists are mostly carried out on biopsied tissue that undergoes the formalin-fixation and paraffin-embedding (FFPE) procedure. This processing method ensures an optimal and permanent preservation of the samples, making FFPE-archived tissue an extremely valuable source for retrospective studies. Nevertheless, as highlighted by previous studies, this fixation procedure significantly changes the principal constituents of cells, resulting in important effects on their infrared (IR) spectrum. Despite the chemical and spectral influence of FFPE processing, some studies demonstrate that FTIR imaging allows precise identification of the different cell types present in biopsied tissue, indicating that the FFPE process preserves spectral differences between distinct cell types. In this study, we investigated whether this is also the case for closely related cell lines. We analyzed spectra from 8 cancerous epithelial cell lines: 4 breast cancer cell lines and 4 melanoma cell lines. For each cell line, we harvested cells at subconfluence and divided them into two sets. We first tested the "original" capability of FTIR imaging to identify these closely related cell lines on cells just dried on BaF2 slides. We then repeated the test after submitting the cells to the FFPE procedure. Our results show that the IR spectra of FFPE processed cancerous cell lines undergo small but significant changes due to the treatment. The spectral modifications were interpreted as a potential decrease in the phospholipid content and protein denaturation, in line with the scientific literature on the topic. Nevertheless, unsupervised analyses showed that spectral proximities and distances between closely related cell lines were mostly, but not entirely, conserved after FFPE processing. Finally, PLS-DA statistical analyses highlighted that closely related cell lines are still successfully identified and efficiently distinguished by FTIR spectroscopy after FFPE treatment. This last result paves the way towards identification and characterization of cellular subtypes on FFPE tissue sections by FTIR imaging, indicating that this analysis technique could become a potential useful tool in cancer research.
Resumo:
A general scheme for devising efficient cluster dynamics proposed in a previous paper [Phys. Rev. Lett. 72, 1541 (1994)] is extensively discussed. In particular, the strong connection among equilibrium properties of clusters and dynamic properties as the correlation time for magnetization is emphasized. The general scheme is applied to a number of frustrated spin models and the results discussed.
Resumo:
Brazilian soils have natural high chemical variability; thus, apparent electrical conductivity (ECa) can assist interpretation of crop yield variations. We aimed to select soil chemical properties with the best linear and spatial correlations to explain ECa variation in the soil using a Profiler sensor (EMP-400). The study was carried out in Sidrolândia, MS, Brazil. We analyzed the following variables: electrical conductivity - EC (2, 7, and 15 kHz), organic matter, available K, base saturation, and cation exchange capacity (CEC). Soil ECa was measured with the aid of an all-terrain vehicle, which crossed the entire area in strips spaced at 0.45 m. Soil samples were collected at the 0-20 cm depth with a total of 36 samples within about 70 ha. Classical descriptive analysis was applied to each property via SAS software, and GS+ for spatial dependence analysis. The equipment was able to simultaneously detect ECa at the different frequencies. It was also possible to establish site-specific management zones through analysis of correlation with chemical properties. We observed that CEC was the property that had the best correlation with ECa at 15 kHz.
Resumo:
ABSTRACT The concept of soil physical quality (SPQ) is currently under discussion, and an agreement about which soil physical properties should be included in the SPQ characterization has not been reached. The objectives of this study were to evaluate the ability of SPQ indicators based on static and dynamic soil properties to assess the effects of two loosening treatments (chisel plowing to 0.20 m [ChT] and subsoiling to 0.35 m [DL]) on a soil under NT and to compare the performance of static- and dynamic-based SPQ indicators to define soil proper soil conditions for soybean yield. Soil sampling and field determinations were carried out after crop harvest. Soil water retention curve was determined using a tension table, and field infiltration was measured using a tension disc infiltrometer. Most dynamic SPQ indicators (field saturated hydraulic conductivity, K0, effective macroporosity, εma, total connectivity and macroporosity indexes [CwTP and Cwmac]) were affected by the studied treatments, and were greater for DL compared to NT and ChT (K0 values were 2.17, 2.55, and 4.37 cm h-1 for NT, ChT, and DL, respectively). However, static SPQ indicators (calculated from the water retention curve) were not capable of distinguishing effects among treatments. Crop yield was significantly lower for the DL treatment (NT: 2,400 kg ha-1; ChT: 2,358 kg ha-1; and DL: 2,105 kg ha1), in agreement with significantly higher values of the dynamic SPQ indicators, K0, εma, CwTP, and Cwmac, in this treatment. The results support the idea that SPQ indicators based on static properties are not capable of distinguishing tillage effects and predicting crop yield, whereas dynamic SPQ indicators are useful for distinguishing tillage effects and can explain differences in crop yield when used together with information on weather conditions. However, future studies, monitoring years with different weather conditions, would be useful for increasing knowledge on this topic.
Resumo:
The ability to determine the location and relative strength of all transcription-factor binding sites in a genome is important both for a comprehensive understanding of gene regulation and for effective promoter engineering in biotechnological applications. Here we present a bioinformatically driven experimental method to accurately define the DNA-binding sequence specificity of transcription factors. A generalized profile was used as a predictive quantitative model for binding sites, and its parameters were estimated from in vitro-selected ligands using standard hidden Markov model training algorithms. Computer simulations showed that several thousand low- to medium-affinity sequences are required to generate a profile of desired accuracy. To produce data on this scale, we applied high-throughput genomics methods to the biochemical problem addressed here. A method combining systematic evolution of ligands by exponential enrichment (SELEX) and serial analysis of gene expression (SAGE) protocols was coupled to an automated quality-controlled sequence extraction procedure based on Phred quality scores. This allowed the sequencing of a database of more than 10,000 potential DNA ligands for the CTF/NFI transcription factor. The resulting binding-site model defines the sequence specificity of this protein with a high degree of accuracy not achieved earlier and thereby makes it possible to identify previously unknown regulatory sequences in genomic DNA. A covariance analysis of the selected sites revealed non-independent base preferences at different nucleotide positions, providing insight into the binding mechanism.
Resumo:
Bacterial reporters are live, genetically engineered cells with promising application in bioanalytics. They contain genetic circuitry to produce a cellular sensing element, which detects the target compound and relays the detection to specific synthesis of so-called reporter proteins (the presence or activity of which is easy to quantify). Bioassays with bacterial reporters are a useful complement to chemical analytics because they measure biological responses rather than total chemical concentrations. Simple bacterial reporter assays may also replace more costly chemical methods as a first line sample analysis technique. Recent promising developments integrate bacterial reporter cells with microsystems to produce bacterial biosensors. This lecture presents an in-depth treatment of the synthetic biological design principles of bacterial reporters, the engineering of which started as simple recombinant DNA puzzles, but has now become a more rational approach of choosing and combining sensing, controlling and reporting DNA 'parts'. Several examples of existing bacterial reporter designs and their genetic circuitry will be illustrated. Besides the design principles, the lecture also focuses on the application principles of bacterial reporter assays. A variety of assay formats will be illustrated, and principles of quantification will be dealt with. In addition to this discussion, substantial reference material is supplied in various Annexes.