966 resultados para Charged binding site
Resumo:
A chimeric Lhcb gene encoding light-harvesting chlorophyll a/b-binding protein (LHCII) was expressed in transgenic tobacco plants. To separate native from recombinant LHCII, the protein was extended by six histidines at its C terminus. Recombinant LHCII was isolated by detergent-mediated monomerization of pure trimers followed by affinity-chromatography on Ni2+-NTA-agarose (NTA is nitrilotriacetic acid). Elution with imidazole yielded recombinant monomers that formed trimers readily after dilution of the detergent without further in vitro manipulations. LHCII subunits showed the typical chlorophyll a/b ratio at all steps of purification indicating no significant loss of pigments. Transgenic tobacco overexpressed amounts of recombinant protein that corresponded to about 0.7% of total LHCII. This yield suggested that expression in planta might be an alternative to the expression of eukaryotic membrane proteins in yeast. Recombinant LHCII was able to form two-dimensional crystals after addition of digalactolipids, which diffracted electrons to 3.6-Å resolution. LHCII carrying a replacement of Arg-21 with Gln accumulated to only 0.004% of total thylakoid proteins. This mutant was monomeric in the photosynthetic membrane probably due to the deletion of the phosphatidylglycerol binding site and was degraded by the plastidic proteolytic system. Exchange of Asn-183 with Leu impaired LHCII biogenesis in a similar way presumably due to the lack of a chlorophyll a binding site.
Resumo:
The β cell-specific glucose-sensitive factor (GSF), which binds the A3 motif of the rat I and human insulin promoters, is modulated by extracellular glucose. A single mutation in the GSF binding site of the human insulin promoter abolishes the stimulation by high glucose only in normal islets, supporting the suggested physiological role of GSF in the glucose-regulated expression of the insulin gene. GSF binding activity was observed in all insulin-producing cells. We have therefore purified this activity from the rat insulinoma RIN and found that a single polypeptide of 45 kDa was responsible for DNA binding. Its amino acid sequence, determined by microsequencing, provided direct evidence that GSF corresponds to insulin promoter factor 1 (IPF-1; also known as PDX-1) and that, in addition to its essential roles in development and differentiation of pancreatic islets and in β cell-specific gene expression, it functions as mediator of the glucose effect on insulin gene transcription in differentiated β cells. The human cDNA coding for GSF/IPF-1 has been cloned, its cell and tissue distribution is described. Its expression in the glucagon-producing cell line αTC1 transactivates the wild-type human insulin promoter more efficiently than the mutated construct. It is demonstrated that high levels of ectopic GSF/IPF-1 inhibit the expression of the human insulin gene in normal islets, but not in transformed βTC1 cells. These results suggest the existence of a control mechanism, such as requirement for a coactivator of GSF/IPF-1, which may be present in limiting amounts in normal as opposed to transformed β cells.
Resumo:
The Arabidopsis thaliana disease resistance genes RPS2 and RPM1 belong to a class of plant disease resistance genes that encode proteins that contain an N-terminal tripartite nucleotide binding site (NBS) and a C- terminal tandem array of leucine-rich repeats. RPS2 and RPM1 confer resistance to strains of the bacterial phytopathogen Pseudomonas syringae carrying the avirulence genes avrRpt2 and avrB, respectively. In these gene-for-gene relationships, it has been proposed that pathogen avirulence genes generate specific ligands that are recognized by cognate receptors encoded by the corresponding plant resistance genes. To test this hypothesis, it is crucial to know the site of the potential molecular recognition. Mutational analysis of RPS2 protein and in vitro translation/translocation studies indicated that RPS2 protein is localized in the plant cytoplasm. To determine whether avirulence gene products themselves are the ligands for resistance proteins, we expressed the avrRpt2 and avrB genes directly in plant cells using a novel quantitative transient expression assay, and found that expression of avrRpt2 and avrB elicited a resistance response in plants carrying the corresponding resistance genes. This observation indicates that no bacterial factors other than the avirulence gene products are required for the specific resistance response as long as the avirulence gene products are correctly localized. We propose that molecular recognition of P. syringae in RPS2- and RPM1-specified resistance occurs inside of plant cells.
Resumo:
This paper describes the placement of a crosslinking agent (dibromobimane) between two thiols (Cys-522 and Cys-707) of a fragment, “S1,” of the motor protein, myosin. It turns out that fastening the first anchor of the crosslinker is easy and rapid, but fastening the second anchor (Cys-522) is very temperature dependent, taking 30 min at room temperature but about a week on ice. Moreover, crystallography taken at 4°C would seem to predict that the linkage is impossible, because the span of the crosslinking agent is much less than the interthiol distance. The simplest resolution of this seeming paradox is that structural fluctuations of the protein render the linkage increasingly likely as the temperature increases. Also, measurements of the affinity of MgADP for the protein, as well as the magnetic resonance of the P-atoms of the ADP once emplaced, suggest that binding the first reagent anchor to Cys-707 initiates an influence that travels to the rather distant ADP-binding site, and it is speculated what this “path of influence” might be.
Resumo:
Potent and selective inhibitors of inducible nitric oxide synthase (iNOS) (EC 1.14.13.39) were identified in an encoded combinatorial chemical library that blocked human iNOS dimerization, and thereby NO production. In a cell-based iNOS assay (A-172 astrocytoma cells) the inhibitors had low-nanomolar IC50 values and thus were >1,000-fold more potent than the substrate-based direct iNOS inhibitors 1400W and N-methyl-l-arginine. Biochemical studies confirmed that inhibitors caused accumulation of iNOS monomers in mouse macrophage RAW 264.7 cells. High affinity (Kd ≈ 3 nM) of inhibitors for isolated iNOS monomers was confirmed by using a radioligand binding assay. Inhibitors were >1,000-fold selective for iNOS versus endothelial NOS dimerization in a cell-based assay. The crystal structure of inhibitor bound to the monomeric iNOS oxygenase domain revealed inhibitor–heme coordination and substantial perturbation of the substrate binding site and the dimerization interface, indicating that this small molecule acts by allosterically disrupting protein–protein interactions at the dimer interface. These results provide a mechanism-based approach to highly selective iNOS inhibition. Inhibitors were active in vivo, with ED50 values of <2 mg/kg in a rat model of endotoxin-induced systemic iNOS induction. Thus, this class of dimerization inhibitors has broad therapeutic potential in iNOS-mediated pathologies.
Resumo:
The minichromosome maintenance (MCM) proteins are essential for DNA replication in eukaryotes. Thus far, all eukaryotes have been shown to contain six highly related MCMs that apparently function together in DNA replication. Sequencing of the entire genome of the thermophilic archaeon Methanobacterium thermoautotrophicum has allowed us to identify only a single MCM-like gene (ORF Mt1770). This gene is most similar to MCM4 in eukaryotic cells. Here we have expressed and purified the M. thermoautotrophicum MCM protein. The purified protein forms a complex that has a molecular mass of ≈850 kDa, consistent with formation of a double hexamer. The protein has an ATP-independent DNA-binding activity, a DNA-stimulated ATPase activity that discriminates between single- and double-stranded DNA, and a strand-displacement (helicase) activity that can unwind up to 500 base pairs. The 3′ to 5′ helicase activity requires both ATP hydrolysis and a functional nucleotide-binding site. Moreover, the double hexamer form is the active helicase. It is therefore likely that an MCM complex acts as the replicative DNA helicase in eukaryotes and archaea. The simplified replication machinery in archaea may provide a simplified model for assembly of the machinery required for initiation of eukaryotic DNA replication.
Resumo:
The N gene, a member of the Toll-IL-1 homology region–nucleotide binding site–leucine-rich repeat region (LRR) class of plant resistance genes, encodes two transcripts, NS and NL, via alternative splicing of the alternative exon present in the intron III. The NS transcript, predicted to encode the full-length N protein containing the Toll-IL-1 homology region, nucleotide binding site, and LRR, is more prevalent before and for 3 hr after tobacco mosaic virus (TMV) infection. The NL transcript, predicted to encode a truncated N protein (Ntr) lacking 13 of the 14 repeats of the LRR, is more prevalent 4–8 hr after TMV infection. Plants harboring a cDNA-NS transgene, capable of encoding an N protein but not an Ntr protein, fail to exhibit complete resistance to TMV. Transgenic plants containing a cDNA-NS-bearing intron III and containing 3′ N-genomic sequences, encoding both NS and NL transcripts, exhibit complete resistance to TMV. These results suggest that both N transcripts and presumably their encoded protein products are necessary to confer complete resistance to TMV.
Resumo:
Poliovirus initiates infection by binding to its cellular receptor (Pvr). We have studied this interaction by using cryoelectron microscopy to determine the structure, at 21-Å resolution, of poliovirus complexed with a soluble form of its receptor (sPvr). This density map aided construction of a homology-based model of sPvr and, in conjunction with the known crystal structure of the virus, allowed delineation of the binding site. The virion does not change significantly in structure on binding sPvr in short incubations at 4°C. We infer that the binding configuration visualized represents the initial interaction that is followed by structural changes in the virion as infection proceeds. sPvr is segmented into three well-defined Ig-like domains. The two domains closest to the virion (domains 1 and 2) are aligned and rigidly connected, whereas domain 3 diverges at an angle of ≈60°. Two nodules of density on domain 2 are identified as glycosylation sites. Domain 1 penetrates the “canyon” that surrounds the 5-fold protrusion on the capsid surface, and its binding site involves all three major capsid proteins. The inferred pattern of virus–sPvr interactions accounts for most mutations that affect the binding of Pvr to poliovirus.
Resumo:
Identification and characterization of p53 target genes would lead to a better understanding of p53 functions and p53-mediated signaling pathways. Two putative p53 binding sites were identified in the promoter of a gene encoding PTGF-β, a type β transforming growth factor (TGF-β) superfamily member. Gel shift assay showed that p53 bound to both sites. Luciferase-coupled transactivation assay revealed that the gene promoter was activated in a p53 dose- as well as p53 binding site-dependent manner by wild-type p53 but not by several p53 mutants. The p53 binding and transactivation of the PTGF-β promoter was enhanced by etoposide, a p53 activator, and was largely blocked by a dominant negative p53 mutant. Furthermore, expression of endogenous PTGF-β was remarkably induced by etoposide in p53-positive, but not in p53-negative, cell lines. Finally, the conditioned medium collected from PTGF-β-overexpressing cells, but not from the control cells, suppressed tumor cell growth. Growth suppression was not, however, seen in cells that lack functional TGF-β receptors or Smad4, suggesting that PTGF-β acts through the TGF-β signaling pathway. Thus, PTGF-β, a secretory protein, is a p53 target that could mediate p53-induced growth suppression in autocrinal as well as paracrinal fashions. The finding made a vertical connection between p53 and TGF-β signaling pathways in controlling cell growth and implied a potential important role of p53 in inflammation regulation via PTGF-β.
Resumo:
Binding properties of lignin peroxidase (LiP) from the basidiomycete Phanerochaete chrysosporium against a synthetic lignin (dehydrogenated polymerizate, DHP) were studied with a resonant mirror biosensor. Among several ligninolytic enzymes, only LiP specifically binds to DHP. Kinetic analysis revealed that the binding was reversible, and that the dissociation equilibrium constant was 330 μM. The LiP–DHP interaction was controlled by the ionization group with a pKa of 5.3, strongly suggesting that a specific amino acid residue plays a role in lignin binding. A one-electron transfer from DHP to oxidized intermediates LiP compounds I and II (LiPI and LiPII) was characterized by using a stopped-flow technique, showing that binding interactions of DHP with LiPI and LiPII led to saturation kinetics. The dissociation equilibrium constants for LiPI–DHP and LiPII–DHP interactions were calculated to be 350 and 250 μM, and the first-order rate constants for electron transfer from DHP to LiPI and to LiPII were calculated to be 46 and 16 s−1, respectively. These kinetic and spectral studies strongly suggest that LiP is capable of oxidizing lignin directly at the protein surface by a long-range electron transfer process. A close look at the crystal structure suggested that LiP possesses His-239 as a possible lignin-binding site on the surface, which is linked to Asp-238. This Asp residue is hydrogen-bonded to the proximal His-176. This His–Asp⋅⋅⋅proximal-His motif would be a possible electron transfer route to oxidize polymeric lignin.
Resumo:
In yeast, microtubules are organized by the spindle pole body (SPB). The SPB is a disk-like multilayered structure that is embedded in the nuclear envelope via its central plaque, whereas the outer and inner plaques are exposed to the cytoplasm and nucleoplasm, respectively. How the SPB assembles is poorly understood. We show that the inner/central plaque is composed of a stable SPB subcomplex, containing the γ-tubulin complex-binding protein Spc110p, calmodulin, Spc42p, and Spc29p. Spc29p acts as a linker between the central plaque component Spc42p and the inner plaque protein Spc110p. Evidence is provided that the calmodulin-binding site of Spc110p influences the binding of Spc29p to Spc110p. Spc42p also was identified as a component of a cytoplasmic SPB subcomplex containing Spc94p/Nud1p, Cnm67p, and Spc42p. Spc29p and Spc42p may be part of a critical interface of nucleoplasmic and cytoplasmic assembled SPB subcomplexes that form during SPB duplication. In agreement with this, overexpressed Spc29p was found to be a nuclear protein, whereas Spc42p is cytoplasmic. In addition, an essential function of SPC29 during SPB assembly is indicated by the SPB duplication defect of conditional lethal spc29(ts) cells and by the genetic interaction of SPC29 with CDC31 and KAR1, two genes that are involved in SPB duplication.
Resumo:
The prevailing paradigm for G protein-coupled receptors is that each receptor is narrowly tuned to its ligand and closely related agonists. An outstanding problem is whether this paradigm applies to olfactory receptor (ORs), which is the largest gene family in the genome, in which each of 1,000 different G protein-coupled receptors is believed to interact with a range of different odor molecules from the many thousands that comprise “odor space.” Insights into how these interactions occur are essential for understanding the sense of smell. Key questions are: (i) Is there a binding pocket? (ii) Which amino acid residues in the binding pocket contribute to peak affinities? (iii) How do affinities change with changes in agonist structure? To approach these questions, we have combined single-cell PCR results [Malnic, B., Hirono, J., Sato, T. & Buck, L. B. (1999) Cell 96, 713–723] and well-established molecular dynamics methods to model the structure of a specific OR (OR S25) and its interactions with 24 odor compounds. This receptor structure not only points to a likely odor-binding site but also independently predicts the two compounds that experimentally best activate OR S25. The results provide a mechanistic model for olfactory transduction at the molecular level and show how the basic G protein-coupled receptor template is adapted for encoding the enormous odor space. This combined approach can significantly enhance the identification of ligands for the many members of the OR family and also may shed light on other protein families that exhibit broad specificities, such as chemokine receptors and P450 oxidases.
Resumo:
We studied the effect of pH on ligand binding in wild-type lactose permease or mutants in the four residues—Glu-269, Arg-302, His-322, and Glu-325—that are the key participants in H+ translocation and coupling between sugar and H+ translocation. Although wild-type permease or mutants in Glu-325 and Arg-302 exhibit marked decreases in affinity at alkaline pH, mutants in either His-322 or Glu-269 do not titrate. The results offer a mechanistic model for lactose/H+ symport. In the ground state, the permease is protonated, the H+ is shared between His-322 and Glu-269, Glu-325 is charge-paired with Arg-302, and substrate is bound with high affinity at the outside surface. Substrate binding induces a conformational change that leads to transfer of the H+ from His-322/Glu-269 to Glu-325 and reorientation of the binding site to the inner surface with a decrease in affinity. Glu-325 then is deprotonated on the inside because of rejuxtaposition with Arg-302. The His-322/Glu-269 complex then is reprotonated from the outside surface to reinitiate the cycle.
Resumo:
Translation inhibitors such as chloramphenicol in prokaryotes or cycloheximide in eukaryotes stabilize many or most cellular mRNAs. In Escherichia coli, this stabilization is ascribed generally to the shielding of mRNAs by stalled ribosomes. To evaluate this interpretation, we examine here how inhibitors affect the stabilities of two untranslated RNAs, i.e., an engineered lacZ mRNA lacking a ribosome binding site, and a small regulatory RNA, RNAI. Whether they block elongation or initiation, all translation inhibitors tested stabilized these RNAs, indicating that stabilization does not necessarily reflect changes in packing or activity of translating ribosomes. Moreover, both the initial RNase E-dependent cleavage of RNAI and lacZ mRNA and the subsequent attack of RNAI by polynucleotide phosphorylase and poly(A)-polymerase were slowed. Among various possible mechanisms for this stabilization, we discuss in particular a passive model. When translation is blocked, rRNA synthesis is known to increase severalfold and rRNA becomes unstable. Meanwhile, the pools of RNase E and polynucleotide phosphorylase, which, in growing cells, are limited because these RNases autoregulate their own synthesis, cannot expand. The processing/degradation of newly synthesized rRNA would then titrate these RNases, causing bulk mRNA stabilization.
Resumo:
Point mutants of three unrelated antifluorescein antibodies were constructed to obtain nine different single-chain Fv fragments, whose on-rates, off-rates, and equilibrium binding affinities were determined in solution. Additionally, activation energies for unbinding were estimated from the temperature dependence of the off-rate in solution. Loading rate-dependent unbinding forces were determined for single molecules by atomic force microscopy, which extrapolated at zero force to a value close to the off-rate measured in solution, without any indication for multiple transition states. The measured unbinding forces of all nine mutants correlated well with the off-rate in solution, but not with the temperature dependence of the reaction, indicating that the same transition state must be crossed in spontaneous and forced unbinding and that the unbinding path under load cannot be too different from the one at zero force. The distance of the transition state from the ground state along the unbinding pathway is directly proportional to the barrier height, regardless of the details of the binding site, which most likely reflects the elasticity of the protein in the unbinding process. Atomic force microscopy thus can be a valuable tool for the characterization of solution properties of protein-ligand systems at the single molecule level, predicting relative off-rates, potentially of great value for combinatorial chemistry and biology.