934 resultados para Cell Signaling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ubiquitination is an essential process involved in basic biological processes such as the cell cycle and cell death. Ubiquitination is initiated by ubiquitin-activating enzymes (E1), which activate and transfer ubiquitin to ubiquitin-conjugating enzymes (E2). Subsequently, ubiquitin is transferred to target proteins via ubiquitin ligases (E3). Defects in ubiquitin conjugation have been implicated in several forms of malignancy, the pathogenesis of several genetic diseases, immune surveillance/viral pathogenesis, and the pathology of muscle wasting. However, the consequences of partial or complete loss of ubiquitin conjugation in multi-cellular organisms are not well understood. Here, we report the characterization of nba1, the sole E1 in Drosophila. We have determined that weak and strong nba1 alleluias behave genetically different and sometimes in opposing phenotypes. For example, weak uba1 alleluias protect cells from cell death whereas cells containing strong loss-of-function alleluias are highly apoptotic. These opposing phenotypes are due to differing sensitivities of cell death pathway components to ubiquitination level alterations. In addition, strong uba1 alleluias induce cell cycle arrest due to defects in the protein degradation of Cyclins. Surprisingly, clones of strong uba1 mutant alleluias stimulate neighboring wild-type tissue to undergo cell division in a non-autonomous manner resulting in severe overgrowth phenotypes in the mosaic fly. I have determined that the observed overgrowth phenotypes were due to a failure to downregulate the Notch signaling pathway in nba1 mutant cells. Aberrant Notch signaling results in the secretion of a local cytokine and activation of JAK/STAT pathway in neighboring cells. In addition, we elucidated a model describing the regulation of the caspase Dronc in surviving cells. Binding of Dronc by its inhibitor Diap1 is necessary but not sufficient to inhibit Dronc function. Ubiquitin conjugation and Uba1 function is necessary for the negative regulation of Dronc. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overexpression of the thrombin receptor (Protease-Activated-Receptor-1), PAR-1, in cell lines and tissue specimens correlates with the metastatic potential of human melanoma. Utilizing lentiviral shRNA to stably silence PAR-1 in metastatic melanoma cell lines results in decreased tumor growth and lung metastasis in vivo. Since the use of viral technology is not ideal for clinical therapies, neutral liposomes (DOPC) were utilized as a delivery vehicle for PAR-1 siRNA. Our data suggest that PAR-1 siRNA-DOPC treatment by systemic delivery significantly decreases tumor growth and lung metastasis in nude mice. Concomitant decreases in angiogenic and invasive factors (IL-8, VEGF, MMP-2) were observed in PAR-1 siRNA-DOPC-treated mice. Utilizing a cDNA microarray platform, several novel PAR-1 downstream target genes were identified, including Connexin 43 (Cx-43) and Maspin. Cx-43, known to be involved in tumor cell diapedesis and attachment to endothelial cells, is decreased after PAR-1 silencing. Furthermore, the Cx-43 promoter activity was significantly inhibited in PAR-1-silenced cells suggesting transcriptional regulation of Cx-43 by PAR-1. ChIP analysis revealed a reduction in SP-1 and AP-1 binding to the Cx-43 promoter. Moreover, melanoma cell attachment to HUVEC was significantly decreased in PAR-1-silenced cells as well as in Cx-43 shRNA transduced cells. As both SP-1 and AP-1 transcription factors act as positive regulators of Cx-43, our data provide a novel mechanism for the regulation of Cx-43 expression by PAR-1. Maspin, a serine protease inhibitor with tumor-suppressor function, was found to be upregulated after PAR-1 silencing. Our results indicate that PAR-1 transcriptionally regulates Maspin, as the promoter activity was significantly increased after PAR-1 silencing. ChIP analysis revealed that silencing PAR-1 increased binding of Ets and c-Jun to the Maspin promoter. As Maspin was recently found to be a tumor-suppressor in melanoma by reducing the invasive capacity of melanoma cells, invasion assays revealed a decrease in invasion after PAR-1 silencing and in cells transduced with a Maspin expression vector. We propose that PAR-1 is key to the progression and metastasis of melanoma in part by regulating the expression of Cx-43 and Maspin. Taken together, we propose that PAR-1 is an attractive target for the treatment of melanoma.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wound healing is a conserved survival response whose function is to restore the integrity of the tissue after physical trauma. Despite numerous studies in the wound healing field, the signals and pathways that orchestrate and control the wound healing program are still not entirely known. To identify additional signals and pathways that regulate epidermal wound repair in Drosophila larvae, we performed a pilot in vivo RNAi screen using a live reporter for epidermal morphology and a wounding assay. From our pilot screen we identified Pvr, the Drosophila homolog of the vertebrate PDGF/VEGF receptors, and six other genes as epidermal wound healing genes. Morphological analysis of wound-edge cells lacking Pvr or the Drosophila Jun N-terminal Kinase (JNK), previously implicated in larval wound closure, suggest that Pvr signaling leads to cell process extension into the wound site while JNK mediates transient dedifferentiation of wound-edge epidermal cells. Furthermore, we found that one of the three known Pvr ligands, Pvf1, is also required for epidermal wound closure. Through tissue-specific knock down and rescue experiments, we propose a model in which epidermally-produced Pvf1 may be sequestered into the hemolymph (blood) and that tissue damage locally exposes blood-borne Pvf1 to Pvr receptors on epidermal cells at the wound edge, thus initiating epidermal cell process extension and migration into the wound gap. Together, our data suggest that the Pvr and JNK signaling pathways act in parallel to control different aspects of wound closure and that PDGF/VEGF ligands and receptors may have a conserved autocrine role in epidermal wound closure. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian target of rapamycin (mTOR) plays an important role in regulating various cellular functions, and the tuberous sclerosis 1 (TSC1)/TSC2 complex serves as a major repressor of the mTOR pathway. Here we demonstrated that arrest-defective protein 1 (ARD1) physically interacts with, acetylates, and stabilizes TSC2, thereby reducing mTOR activity. The inhibition of mTOR by ARD1 suppresses cell proliferation and increases autophagy, which further impairs tumorigenicity. Correlation between the levels of ARD1 and TSC2 was found in multiple tumor types, suggesting the physiological importance of ARD1 in stabilizing TSC2. Moreover, evaluation of loss of heterozygosity (LOH) at Xq28 revealed allelic loss in 31% of tested breast cancer cell lines and tumor samples. Together, our findings suggest that ARD1 functions as a negative regulator of the mTOR pathway and that dysregulation of the ARD1/TSC2/mTOR axis may contribute to cancer development. To further explore the signaling pathway of ARD1, we provided evidence showing the phosphorylation of ARD1 by IKKβ, which mediated the destabilization of ARD1. Future work may be needed to study the biological effect of this post-translational modification. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MEKK3, a member of the MAP3K family, is involved in regulating multiple MAPK and NF-κB pathways. The MAPK and NF-κB signaling pathways are important in regulating T cell functions. MEKK3 is expressed through the development of T cell and also in subsets of T cell in the peripheral. However, the specific role of MEKK3 in T cell function is unknown. To reveal the in vivo function of MEKK3 in T cells, I have generated MEKK3 T cell conditional knock-out mice. Despite a normal thymus development in the conditional knock-out mice, I observed a decrease in the number of peripheral T-cells and impaired T-cell function in response to antigen stimulation. T cells undergo homeostatic proliferation under lymphopenia condition, a process called lymphopenia-induced proliferation (LIP). Using a LIP model, I demonstrated that the reduction of peripheral T cell number is largely due to a severe impairment of the self-antigen/MHC mediated T cell homeostasis. Upon anti-CD3 stimulation, the proliferation of MEKK3-deficient T cell is not significantly affected, but the production of IFNγ by naïve and effector CD4 T cells are markedly decreased. Interestingly, the IL-12/IL-18 driven IFNγ production and MAPK activation in MEKK3-deficient T cells is not affected, suggesting that MEKK3 selectively mediates the TCR induced MAPK signaling. Furthermore, I found that MEKK3 is activated by TCR stimulation in a RAC1/2 dependent manner, but not by IL-12/IL-18 stimulation. Finally, I showed that basal level of ERK and JNK activation is defective under LIP condition. I showed that the TCR induced ERK, JNK and p38 MAPK activation is also defective in MEKK3 deficient CD4 T cells. Taken together, my data demonstrate a crucial role of MEKK3 in T cell homeostasis and IFNγ production through regulating the TCR mediated MAPK pathway. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atherosclerosis is a complex disease resulting from interactions of genetic and environmental risk factors leading to heart failure and stroke. Using an atherosclerotic mouse model (ldlr-/-, apobec1-/- designated as LDb), we performed microarray analysis to identify candidate genes and pathways, which are most perturbed in changes in the following risk factors: genetics (control C57BL/6 vs. LDb mice), shearstress (lesion-prone vs. lesion-resistant regions in LDb mice), diet (chow vs. high fat fed LDb mice) and age (2-month-old vs. 8-month old LDb mice). ^ Atherosclerotic lesion quantification and lipid profile studies were performed to assess the disease phenotype. A microarray study was performed on lesion-prone and lesion-resistant regions of each aorta. Briefly, 32 male C57BL/6 and LDb mice (n =16/each) were fed on either chow or high fat diet, sacrificed at 2- and 8-months old, and RNA isolated from the aortic lesion-prone and aortic lesion-resistant segments. Using 64 Affymetrix Murine 430 2.0 chips, we profiled differentially expressed genes with the cut off value of FDR ≤ 0.15 for t-test, and q <0.0001 for the ANOVA. The data were normalized using two normalization methods---invariant probe sets (Loess) and Quantile normalization, the statistical analysis was performed using t-tests and ANOVA, and pathway characterization was done using Pathway Express (Wayne State). The result identified the calcium signaling pathway as the most significant overrepresented pathway, followed by focal adhesion. In the calcium signaling pathway, 56 genes were found to be significantly differentially expressed out of 180 genes listed in the KEGG calcium signaling pathway. Nineteen of these genes were consistently identified by both statistical tests, 11 of which were unique to the test, and 26 were unique to the ANOVA test, using the cutoffs noted above. ^ In conclusion, this finding suggested that hypercholesterolemia drives the disease progression by altering the expression of calcium channels and regulators which subsequently results in cell differentiation, growth, adhesion, cytoskeletal change and death. Clinically, this pathway may serve as an important target for future therapeutic intervention, and thus the calcium signaling pathway may serve as an important target for future diagnostic and therapeutic intervention. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The β-catenin/Lef/Tcf-mediated Wnt pathway is central to the developmental of all animals, stem cell renewal, and cancer progression. Prior studies in frogs and mice have indicated that the ligand Wnt-4 is essential for the mesenchyme to epithelial transition that generates tubules in the context of kidney organogenesis. More recently, Wnt-9b in mice, was likewise found to be required. Yet despite the importance of Wnt signals in renal development, the corresponding Frizzled receptor(s) and downstream signaling mechanim(s) are unclear. My work addresses these knowledge gaps using in vitro (Madin-Darby Canine Kidney cells) and in vivo (Xenopus laevis and zebrafish pronephros) tubulogenic kidney model systems. Employing established reporter constructs of Wnt/β-catenin pathway activity, I have determined that MDCK cells are highly responsive to Wnt-4, -1, and -3A, but not to Wnt-5A and control conditions. I have confirmed that Wnt-4's canonical signaling activity in MDCK cells is mediated by downstream effectors of the Wnt/β-catenin pathway using β-Engrailed and dnTCF-4, constructs that suppress this pathway. I have further found that MDCK cells express the Frizzled-6 receptor, and that Wnt-4 forms a biochemical complex with Frizzled-6, yet does not appear to transduce Wnt-4's canonical signal. Additionally, I demonstrate that standard Hepatocyte Growth Factor (HGF)-mediated (non-physiologic) induction of MDCK tubulogenesis in collagen matrices is not altered by activation or suppression of β-catenin signaling activity; however, β-catenin signaling maintains cell survival in this in vitro system. Using a Wnt/β-catenin signaling reporter in Xenopus laevis, I detect β-catenin signaling activity in the early pronephric epithelial kidney tubules. By inhibiting the Wnt/β-catenin signaling pathway in both zebrafish and Xenopus , a significant loss of kidney tubulogenesis is observed with little or no effect on adjoining axis or somite development. This inhibition also leads to the appearance of severe edema that phenocopies embryos depleted for Wnt-4. Tubulogenic loss does not appear to be caused by increased cell death in the Xenopus pronephric field, but rather by lessened expression of tubule epithelium genes associated with cellular differentiation. Together, my results show that Wnt/β-catenin signaling is required for renal tubule development and that Wnt-4 is a strong candidate for activating this pathway. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffuse gliomas are highly lethal central nervous system malignancies which, unfortunately, are the most common primary brain tumor and also the least responsive to the very few therapeutic modalities currently available to treat them. IGFBP2 is a newly recognized oncogene that is operative in multiple cancer types, including glioma, and shows promise for a targeted therapeutic approach. Elevated IGFBP2 expression is present in high-grade glioma and correlates with poor survival. We have previously demonstrated that IGFBP2 induces glioma development and progression in a spontaneous glioma mouse model, which highlighted its significance and potential for future therapy. However, we did not yet know the key physiological pathways associated with this newly characterized oncogene. We first evaluated human glioma genomics data harnessed from the publicly available Rembrandt source to identify major pathways associated with IGFBP2 expression. Integrin and ILK, among other cell migration and invasion-related pathways, were the most prominently associated. We confirmed that these pathways are regulated by IGFBP2 in glioma cells lines, and demonstrated that 1) IGFBP2 activates integrin α5β1, leading to the activation of key pathways important in glioma; 2) IGFBP2 mediates cell migration pathways through ILK; and 3) IGFBP2 activates NF-kB via an integrin α5 interaction. We then sought to determine whether this was a physiologically active signaling pathway in vivo by assessing its ability to induce glioma progression in the RCAS/tv-a spontaneous glioma mouse model. We found that ILK is a key downstream mediator of IGFBP2 that is required for the induction of glioma progression. Most significantly, a genetic therapeutic approach revealed that perturbation of any point in the pathway thwarted tumor progression, providing strong evidence that targeting the key players could potentially produce a significant benefit for human glioma patients. The elucidation of this signaling pathway is a critical step, since efforts to create a small molecule drug targeting IGFBP2 have so far not been successful, but a number of inhibitors of the other pathway constituents, including ILK, integrin and NF-kB, have been developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. The mTOR pathway is commonly altered in human tumors and promotes cell survival and proliferation. Preliminary evidence suggests this pathway's involvement in chemoresistance to platinum and taxanes, first line therapy for epithelial ovarian cancer. A pathway-based approach was used to identify individual germline single nucleotide polymorphisms (SNPs) and cumulative effects of multiple genetic variants in mTOR pathway genes and their association with clinical outcome in women with ovarian cancer. ^ Methods. The case-series was restricted to 319 non-Hispanic white women with high grade ovarian cancer treated with surgery and platinum-based chemotherapy. 135 SNPs in 20 representative genes in the mTOR pathway were genotyped. Hazard ratios (HRs) for death and Odds ratios (ORs) for failure to respond to primary therapy were estimated for each SNP using the multivariate Cox proportional hazards model and multivariate logistic regression model, respectively, while adjusting for age, stage, histology and treatment sequence. A survival tree analysis of SNPs with a statistically significant association (p<0.05) was performed to identify higher order gene-gene interactions and their association with overall survival. ^ Results. There was no statistically significant difference in survival by tumor histology or treatment regimen. The median survival for the cohort was 48.3 months. Seven SNPs were significantly associated with decreased survival. Compared to those with no unfavorable genotypes, the HR for death increased significantly with the increasing number of unfavorable genotypes and women in the highest risk category had HR of 4.06 (95% CI 2.29–7.21). The survival tree analysis also identified patients with different survival patterns based on their genetic profiles. 13 SNPs on five different genes were found to be significantly associated with a treatment response, defined as no evidence of disease after completion of primary therapy. Rare homozygous genotype of SNP rs6973428 showed a 5.5-fold increased risk compared to the wild type carrying genotypes. In the cumulative effect analysis, the highest risk group (individuals with ≥8 unfavorable genotypes) was significantly less likely to respond to chemotherapy (OR=8.40, 95% CI 3.10–22.75) compared to the low risk group (≤4 unfavorable genotypes). ^ Conclusions. A pathway-based approach can demonstrate cumulative effects of multiple genetic variants on clinical response to chemotherapy and survival. Therapy targeting the mTOR pathway may modify outcome in select patients.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traumatic brain injury (TBI) often results in disruption of the blood brain barrier (BBB), which is an integral component to maintaining the central nervous system homeostasis. Recently cytosolic calcium levels ([Ca2+]i), observed to elevate following TBI, have been shown to influence endothelial barrier integrity. However, the mechanism by which TBI-induced calcium signaling alters the endothelial barrier remains unknown. In the present study, an in vitro BBB model was utilized to address this issue. Exposure of cells to biaxial mechanical stretch, in the range expected for TBI, resulted in a rapid cytosolic calcium increase. Modulation of intracellular and extracellular Ca2+ reservoirs indicated that Ca2+ influx is the major contributor for the [Ca2+]i elevation. Application of pharmacological inhibitors was used to identify the calcium-permeable channels involved in the stretch-induced Ca2+ influx. Antagonist of transient receptor potential (TRP) channel subfamilies, TRPC and TRPP, demonstrated a reduction of the stretch-induced Ca2+ influx. RNA silencing directed at individual TRP channel subtypes revealed that TRPC1 and TRPP2 largely mediate the stretch-induced Ca2+ response. In addition, we found that nitric oxide (NO) levels increased as a result of mechanical stretch, and that inhibition of TRPC1 and TRPP2 abolished the elevated NO synthesis. Further, as myosin light chain (MLC) phosphorylation and actin cytoskeleton rearrangement are correlated with endothelial barrier disruption, we investigated the effect mechanical stretch had on the myosin-actin cytoskeleton. We found that phosphorylated MLC was increased significantly by 10 minutes post-stretch, and that inhibition of TRP channel activity or NO synthesis both abolished this effect. In addition, actin stress fibers formation significantly increased 2 minutes post-stretch, and was abolished by treatment with TRP channel inhibitors. These results suggest that, in brain endothelial cells, TRPC1 and TRPP2 are activated by TBI-mechanical stress and initiate actin-myosin contraction, which may lead to disruption of the BBB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metformin has antiproliferative effects through the activation of AMPK and has gained interest as an antineoplastic agent in several cancer types, although studies in endometrial cancer (EC) are limited. The aims of this project were to evaluate pathways targeted by metformin in EC, investigate mechanisms by which metformin exerts its antiproliferative effects, and explore rational combination therapies with other targeted agents. Three EC cell lines were used to evaluate metformin’s effect on cell proliferation, PI3K and Ras-MAPK signaling, and apoptosis. A xenograft mouse model was also used to evaluate the effects of metformin treatment on in vivo tumor growth. These preliminary studies demonstrated that K-Ras mutant cell lines exhibited a decreased proliferative rate, reduced tumor growth, and increased apoptosis in response to metformin compared to K-Ras wild-type cells. To test the hypothesis that mutant K-Ras may predict response to metformin, murine EC cells with loss of PTEN and expressing mutant K-RasG12D were transfected to re-express PTEN or have K-Ras silenced using siRNA. While PTEN expression did not alter response to metformin, cells in which K-Ras was silenced displayed reduced sensitivity to metformin. Mislocalization of K-Ras to the cytoplasm is associated with decreased signaling and induction of apoptosis. Metformin’s effect on K-Ras localization was analyzed by confocal microscopy in cells expressing oncogenic GFP-K-RasG12V. Metformin demonstrated concentration-dependent mislocalization of K-Ras to the cytoplasm. Mislocalization of K-Ras to the cytoplasm was confirmed in K-Ras mutant EC cells (Hec1A) by cell fractionation in response to metformin 1 and 5 mM (p=0.008 and p=0.004). This effect appears to be AMPK-independent as combined treatment with Compound C, an AMPK inhibitor, did not alter K-Ras localization. Furthermore, treatment of EC cells with metformin in combination with PI3K inhibitors resulted in a significant decrease in proliferation than either agent or metformin alone. While metformin exerts antineoplastic effects by activation of AMPK and decreased PI3K signaling, our data suggest that metformin may also disrupt localization of K-Ras and hence its signaling in an AMPK-independent manner. This has important implications in defining patients who may benefit from metformin in combination with other targeted agents, such as mTOR inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prevalence of obesity has continued to rise over the last several decades in the United States lending to overall increases in risk for chronic diseases including many types of cancer. In contrast, reduction in energy consumption via calorie restriction (CR) has been shown to be a potent inhibitor of carcinogenesis across a broad range of species and tumor types. Previous data has demonstrated differential signaling through Akt and mTOR via the IGF-1R and other growth factor receptors across the diet-induced obesity (DIO)/CR spectrum. Furthermore, mTORC1 is known to be regulated directly via nutrient availability, supporting its role in the link between epithelial carcinogenesis and diet-induced obesity. In an effort to better understand the importance of mTORC1 in the context of both positive and negative energy balance during epithelial carcinogenesis, we have employed the use of specific pharmacological inhibitors, rapamycin (mTORC1 inhibitor) and metformin (AMPK activator) to target mTORC1 or various components of this pathway during skin tumor promotion. Two-stage skin carcinogenesis studies demonstrated that mTORC1 inhibition via rapamycin, metformin or combination treatments greatly inhibited skin tumor development in normal, overweight and obese mice. Furthermore, mechanisms by which these chemopreventive agents may be exerting their anti-tumor effects were explored. In addition, the effect of these compounds on the epidermal proliferative response was analyzed and drastic decreases in epidermal hyperproliferation and hyperplasia were found. Rapamycin also inhibited dermal inflammatory cell infiltration in a dose-dependent manner. Both compounds also blocked or attenuated TPA-induced signaling through epidermal mTORC1 as well as several downstream targets. In addition, inhibition of this pathway by metformin appeared to be, at least in part, dependent on AMPK activation in the skin. Overall, the data indicate that pharmacological strategies targeting this pathway offset the tumor-enhancing effects of DIO and may serve as possible CR mimetics. They suggest that mTORC1 contributes significantly to the process of skin tumor promotion, specifically during dietary energy balance effects. Exploiting the mechanistic information underlying dietary energy balance responsive pathways will help translate decades of research into effective strategies for prevention of epithelial carcinogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genetic factors that influence bladder cancer clinical outcomes are largely unknown. In this clinical outcomes study, I assessed genetic variations in the Wnt/β-catenin stem-cell pathway genes for association with recurrence and progression. A total of 230 SNPS in 40 genes from the Wnt/β-catenin pathway were genotyped in 419 histologically confirmed non-muscle invasive bladder cancer cases. Several significant associations were observed in the clinical outcomes analysis. Under the dominant model WNT8B: rs4919464 (HR: 1.55, 95% CI: 1.17-2.06, P=2.2x10-3) and WNT8B: rs3793771 (HR: 1.54, 95% CI: 1.09-1.62, P=4.6x10-3 ) were statistically significantly associated with an increase risk of recurrence while two other variants, APC2: rs11668593 (HR: 2.50, 95% CI: 1.43-4.35, P=1.2x10-3) and LRP5 : rs312778 (HR: 1.81, 95% CI: 1.23-2.65, P=2.7x10-3), were significantly associated with recurrence risk under the recessive model of inheritance. Four SNPs in the recessive model were associated with an increased risk of progression (AXIN2: rs1544427, LRP5: rs312778, AXIN1: rs370681, AXIN1: rs2301522). LRP5: rs312778 had the most significant increased risk of progression with a 2.68 (95% CI: 1.52-4.72, P=6.4x10-4)-fold increased risk. Stratification analysis based on treatment regimen (transurethral resection (TUR) and Bacillus Calmette-Guérin (BCG)) was also performed. Individuals with at least one variant in AXIN2: rs2007085 were found to have a 2.09 (95% CI: 1.24-3.52, P=5.4x10-3) -fold increased risk of recurrence in those that received TUR only, and no statistically significant effect was seen in those that received BCG. Individuals who received TUR with at least one variant in LEF1: rs10516550 were found to have a 2.26 (95% CI: 1.22-4.18, P=9.7x10-3)-fold increase risk of recurrence and no statistically significant effect was found in individuals who received BCG. Also, the recessive model of LRP6: rs2302684 in TUR only treatment was shown to have a 1.95 (95%CI: 1.18-3.21, P=8.8x10 -3)-fold increased risk of recurrence, and a suggested protective effect associated with a (HR: 0.83, 95% CI: 0.51-1.37, P=0.468) decreased risk of recurrence. Together, these findings implicate the Wnt/β-catenin stem-cell pathway as playing a role in bladder cancer clinical outcomes and have important implications for personalization of future treatment regimens. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite having been identified over thirty years ago and definitively established as having a critical role in driving tumor growth and predicting for resistance to therapy, the KRAS oncogene remains a target in cancer for which there is no effective treatment. KRas is activated b y mutations at a few sites, primarily amino acid substitutions at codon 12 which promote a constitutively active state. I have found that different amino acid substitutions at codon 12 can activate different KRas downstream signaling pathways, determine clonogenic growth potential and determine patient response to molecularly targeted therapies. Computer modeling of the KRas structure shows that different amino acids substituted at the codon 12 position influences how KRas interacts with its effecters. In the absence of a direct inhibitor of mutant KRas several agents have recently entered clinical trials alone and in combination directly targeting two of the common downstream effecter pathways of KRas, namely the Mapk pathway and the Akt pathway. These inhibitors were evaluated for efficacy against different KRAS activating mutations. An isogenic panel of colorectal cells with wild type KRas replaced with KRas G12C, G12D, or G12V at the endogenous loci differed in sensitivity to Mek and Akt inhibition. In contrast, screening was performed in a broad panel of lung cell lines alone and no correlation was seen between types of activating KRAS mutation due to concurrent oncogenic lesions. To find a new method to inhibit KRAS driven tumors, siRNA screens were performed in isogenic lines with and without active KRas. The knockdown of CNKSR1 (CNK1) showed selective growth inhibition in cells with an oncogenic KRAS. The deletion of CNK1 reduces expression of mitotic cell cycle proteins and arrests cells with active KRas in the G1 phase of the cell cycle similar to the deletion of an activated KRas regardless of activating substitution. CNK1 has a PH domain responsible for localizing it to membrane lipids making KRas potentially amenable to inhibition with small molecules. The work has identified a series of small molecules capable of binding to this PH domain and inhibiting CNK1 facilitated KRas signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an interface between the circulatory and central nervous systems, the neurovascular unit is vital to the development and survival of tumors. The malignant brain cancer glioblastoma multiforme (GBM) displays invasive growth behaviors that are major impediments to surgical resection and targeted therapies. Adhesion and signaling pathways that drive GBM cell invasion remain largely uncharacterized. Here we have utilized human GBM cell lines, primary patient samples, and pre-clinical mouse models to demonstrate that integrin αvβ8 is a major driver of GBM cell invasion. β8 integrin is overexpressed in many human GBM cells, with higher integrin expression correlating with increased invasion and diminished patient survival. Silencing β8 integrin in human GBM cells leads to impaired tumor cell invasion due to hyperactivation of the Rho GTPases Rac1 and Cdc42. β8 integrin associates with Rho GDP Dissociation Inhibitor 1 (RhoGDI1), an intracellular signaling effector that sequesters Rho GTPases in their inactive GDP-bound states. Silencing RhoGDI1 expression or uncoupling αvβ8 integrin-RhoGDI1 protein interactions blocks GBM cell invasion due to Rho GTPase hyperactivation. These data reveal for the first time that αvβ8 integrin, via interactions with RhoGDI1, suppresses activation of Rho proteins to promote GBM cell invasiveness. Hence, targeting the αvβ8 integrin-RhoGDI1 signaling axis may be an effective strategy for blocking GBM cell invasion.