851 resultados para Cassidulina teretis
Resumo:
The distribution of living (Rose Bengal-stained), dead and fossil benthic foraminifera was investigated in six short cores (multicores, 30-32 cm total length) recovered from the central Red Sea. The ecological preferences as well as the relationship between the live and dead/fossil assemblages (preserved down-core) were examined. The sites, located along a W-E profile and between the depth of 366 and 1782 m, extend from the center of the oxygen minimum zone (OMZ, ~200-650 m), through its margin at ~600 m, and down to the well-aerated deep-water environment. Live (Rose-Bengal stained) and coexisting dead foraminifera were studied in the upper 5 cm of each of the sites, and the fossil record was studied down to ~32 cm. Q-mode Principal Component Analysis was used and four distinct foraminiferal fossil assemblages were determined. These assemblages follow different water mass properties. In the center of the OMZ, where the organic carbon content is highest and the oxygen concentration is lowest (<=0.5 ml O2/l), the Bolivina persiensis-Bulimina marginata-Discorbinella rhodiensis assemblage dominates. The slightly more aerated and lower organic-carbon-content seafloor, at the margin of the OMZ, is characterized by the Neouvigerina porrecta-Gyroidinoides cf. G. soldanii assemblage. The transitional environment, between 900-1200 m, with its well-aerated and oligotrophic seafloor, is dominated by the Neouvigerina ampullacea-Cibicides mabahethi assemblage. The deeper water (>1500 m), characterized by the most oxygenated and oligotrophic seafloor conditions, is associated with the Astrononion sp. A-Hanzawaia sp. A assemblage. Throughout the Red Sea extremely high values of temperature and salinity are constant below ~200 m depth, but the flux of organic matter to the sea floor varies considerably with bathymetry and appears to be the main controlling factor governing the distribution pattern of the benthic foraminifera. Comparison between live and the dead/fossil assemblages reveals a large difference between the two. Processes that may control this difference include species-specific high turnover rates, and preferential predation and loss of fragile taxa (either by chemical or microbial processes). Significant variations in the degree of loss of the organic-cemented agglutinants were observed down core. This group is preserved down to 5-10 cm at the shallow OMZ sites and down to greater depths at well-aerated and oligotrophic sites. The lower rate of disintegration of these forms, in the deeper locations of the Red Sea, may be related to low microbial activity. This results in the preservation of increasing numbers of organic-cemented shells down-core.
Resumo:
The oxygen minimum zone (OMZ) of the late Quaternary California margin experienced abrupt and dramatic changes in strength and depth in response to changes in intermediate water ventilation, ocean productivity, and climate at orbital through millennial time scales. Expansion and contraction of the OMZ is exhibited at high temporal resolution (107-126 year) by quantitative benthic foraminiferal assemblage changes in two piston cores forming a vertical profile in Santa Barbara Basin (569 m, basin floor; 481 m, near sill depth) to 34 and 24 ka, respectively. Variation in the OMZ is quantified by new benthic foraminiferal groupings and new dissolved oxygen index based on documented relations between species and water-mass oxygen concentrations. Foraminiferal-based paleoenvironmental assessments are integrated with principal component analysis, bioturbation, grain size, CaCO3, total organic carbon, and d13C to reconstruct basin oxygenation history. Fauna responded similarly between the two sites, although with somewhat different magnitude and taxonomic expression. During cool episodes (Younger Dryas and stadials), the water column was well oxygenated, most strongly near the end of the glacial episode (17-16 ka; Heinrich 1). In contrast, the OMZ was strong during warm episodes (Bølling/Allerød, interstadials, and Pre-Boreal). During the Bølling/Allerød, the OMZ shoaled to <360 m of contemporaneous sea level, its greatest vertical expansion of the last glacial cycle. Assemblages were then dominated by Bolivina tumida, reflecting high concentrations of dissolved methane in bottom waters. Short decadal intervals were so severely oxygen-depleted that no benthic foraminifera were present. The middle to late Holocene (6-0 ka) was less dysoxic than the early Holocene.
Resumo:
Oxygen and carbon isotope analyses were performed on monospecific or mixed-species samples of benthic foraminifers, as well as on the planktonic species Globigerinoides ruber from a 24-m hydraulic piston core raised on the western flank of the Rio Grande Rise, at DSDP Site 517 (30°56.81'S and 38°02.47'W, water depth 2963 m) in the southwestern Atlantic. This site is presently located in the core of North Atlantic Deep Water (NADW). This is the first long isotopic record of Quaternary benthic foraminifers; it displays at least 30 isotopic stages, 25 of them readily correlated with the standard sequence of Pacific Core V28-239. The depths of both the Bruhnes/Matuyama boundary and the Jaramillo Event based on oxygen isotope stratigraphy agree well with paleomagnetic results. Quaternary faunal data from this part of the Atlantic are dated through isotopic stratigraphy and partially contradict data previously published by Williams and Ledbetter (1979). There was a substantial increase in the size of the earth's major ice sheets culminating at Stage 22 and corresponding to a l per mil progressive increase of d18O maximal values. Further, ice volume-induced isotopic changes were not identical for different glacial cycles. Oxygen and carbon isotope analyses of benthic foraminifers show that during Pleistocene glacial episodes, NADW was cooler than today and that Mediterranean outflow might still have contributed to the NADW sources. The comparison of coiling ratio changes of Globorotalia truncatulinoides with planktonic and benthic oxygen isotope records shows that there might have been southward excursions of the Brazil Current during the Pleistocene, perhaps related to Antarctic surface water surges. The question of the location of NADW sources during glacial maxima remains open.
Resumo:
Recent benthic foraminifera and their distribution in surface sediments were studied on a transect through the Peruvian oxygen minimum zone (OMZ) between 10 and 12°S. The OMZ with its steep gradients of oxygen concentrations allows to determine the oxygen-dependent changes of species compositions in a relatively small area. Our results from sediments of thirteen multicorer stations from 79 to 823 m water depth demonstrate that calcareous species, especially bolivinids dominate the assemblages throughout the OMZ. The depth distribution of several species matches distinct ranges of bottom water oxygen levels. The distribution pattern inferred a proxy which allows to estimate dissolved oxygen concentrations for reconstructing oxygen levels in the geological past.
Resumo:
Sixty surface sediment samples from the eastern South Atlantic Ocean including the Walvis Ridge, the Angola and Cape basins, and the Southwest African continental margin were analysed for their benthic foraminiferal content to unravel faunal distribution patterns and ecological preferences. Live (stained with Rose Bengal) and dead faunas were counted separately and then each grouped by Q-mode principal component analysis into seven principal faunal end-members. Then, multiple regression technique was used to correlate Recent assemblages with available environmental variables and to finally differentiate between four principal groups of environmental agents acting upon the generation of benthic foraminiferal assemblages: (1) seasonality of food supply and organic carbon flux rates, together with oxygen content in the pore and bottom waters; (2) lateral advection of deep-water masses; (3) bottom water carbonate corrosiveness; and (4) energetic state at the benthic boundary layer and grain size composition of the substrate. Food supply and corresponding dissolved oxygen contents in the pore and bottom waters turned out to be the most important factors which control the distribution pattern of the Recent benthic foraminifera. At the continental margin, in the zone of coastal upwelling and its mixing area, benthic foraminiferal assemblages are dominated by stenobathic high-productivity faunas, characterized by elevated standing stocks, low diversities and a large number of endobenthic living species. At the continental shelf and upper continental slope the live assemblages are characterized by Rectuvigerina cylindrica, Uvigerina peregrina s.1., Uvigerina auberiana and Rhizammina spp. while the dead assemblages are characterized by Cassidulina laevigata, Bolivina dilatata, Bulimina costata and B. mexicana. At the lower continental slope strong influence of high organic matter fluxes on the species composition is restricted to the area off the Cunene river mouth, where the live assemblage is dominated by Uvigerina peregrina s.1., the corresponding dead assemblage by Melonis barleeanum and M. zaandamae. In the adjacent areas of the lower continental slope the biocoenosis is characterized by Reophax bilocularis, and Epistominella exigua which becomes dominant in the corresponding dead assemblage. At the Walvis Ridge and in the abyssal Angola and Cape basins, where organic matter fluxes are low and highly seasonal, benthic foraminiferal assemblages reflect both the oligotrophic situation and the deep and bottom water mass configuration. The top and flanks of the Walvis Ridge are inhabited by the Rhizammina, Psammosphaera and R. bilocularis live assemblages, the corresponding dead assemblages are dominated by G. subglobosa on the ridge top and E. exigua on the flanks. Within the highly diverse E. exigua dead assemblage several associated epibenthic species coincide with the core of NADW between about 1600 and 3700 m water depth. These species include Osangularia culter, Cibicidoides kullenbergi, Melonis pompilioides, Bolivinita pseudothalmanni and Bulimina alazanensis. The assemblages of the abyssal Cape and Angola basins are characterized by Nuttallides umbonifer and a high proportion of agglutinated species. These species are adapted to very low organic matter fluxes and a carbonate corrosive environment.
Resumo:
We investigated Oligocene and early Miocene benthic foraminiferal faunas (> 105 µm in size) from Ocean Drilling Program (Leg 199) Site 1218 (4826 m water depth and ~3300 to ~4000 m paleo-water depth) and Site 1219 (5063 m water depth and ~4200 to ~4400 m paleo-water depth) to understand the response of abyssal benthic foraminifera to mid-Oligocene glacial events in the eastern Equatorial Pacific Ocean. Two principal factor assemblages were recognized. The Factor 1 assemblage (common Nuttallides umbonifer) is related to either an influx of the Southern Component Water (SCW), possibly carbonate undersaturated, or a decrease in seasonality of the food supply from the surface ocean. The Factor 2 assemblage is characterized by typical deep-sea taxa living under variable trophic conditions, possibly with a seasonal component in food supply. The occurrence of abyssal benthic foraminifera faunas during the mid-Oligocene depends on either the effect of SCW or the seasonality of food resources. The Factor 1 assemblage was most common near 76Ol-C11r, 73Ol-C10rn and 67Ol-C9n (ca. 30.2, 29.1 and 26.8 Ma respectively by Pälike et al. (2006, doi:10.1126/science.1133822)). This indicates that the effect of SCW increased or the seasonal input of food from the surface ocean to benthic environments was weakened close to these glacial events. In contrast, the huge export flux of small biogenic carbonate particles close to these glacial events might be responsible for carbonate-rich sediments buffering carbonate undersaturation. Changes in deep-water masses or the periodicity of food supply from the surface ocean and variation in surface carbonate production affected by orbital forcing had an impact on the mid-Oligocene faunas of abyssal benthic foraminifera around the intervals of glacial events in the eastern Equatorial Pacific Ocean. The Factor 1 assemblage decreased sharply at ? 30 Ma (29.8 Ma by Pälike et al. (2006), 30.0 Ma by CK95) and returned to dominance after ? 29 Ma (28.6 Ma by Pälike et al. (2006), 28.8 Ma by CK95). It is likely that the effect of SCW (possibly carbonate undersaturated) has intensified since the late Oligocene. The faunal transition of benthic foraminifera in the eastern Equatorial Pacific Ocean at ~29 Ma might be attributable to the influence of Northern Component Water (NCW) input to the Southern Ocean and the subsequent formation of SCW at about that time.
Resumo:
The influence of different primary productivity regimes on live (Rose Bengal stained) and dead benthic foraminiferal distribution, as well as on the stable carbon isotopic composition of foraminiferal tests, was investigated in sediment surface samples (0-1 cm) from the upwelling region off Morocco between Cape Ghir (31°N) and Cape Yubi (27°N). A combination of factor analysis, detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) was applied to the benthic foraminiferal data sets. Five major assemblages for both the live and dead fauna were revealed by factor analysis. In the cape regions organic matter fluxes are enhanced by high chlorophyll-a concentrations in the overlying surface waters. Here, benthic foraminiferal faunas are characterized by identical live and dead assemblages, high standing stocks, and low species delta13C values, indicating constant year-round high productivity. Bulimina marginata dominates the unique fauna at the shallowest station off Cape Ghir indicating highest chlorophyll-a concentrations. Off both capes, the succession of the Bulimina aculeata/Uvigerina mediterranea assemblage, the Sphaeroidina bulloides/Gavelinopsis translucens assemblage, and the Hoeglundina elegans assemblage from the shelf to the deep sea reflects the decrease in chlorophyll-a concentrations, hence the export flux. In contrast, the area between the capes is characterized by differently composed live and dead assemblages, low standing stocks, and less depleted delta13C values, thus reflecting low primary productivity. High foraminiferal numbers of Epistominella exigua, Eponides pusillus, and Globocassidulina subglobosa in the dead fauna indicate a seasonally varying primary productivity signal. Significantly lower mean delta13C values were recorded in Bulimina mexicana, Cibicidoides kullenbergi, H. elegans, U. mediterranea and Uvigerina peregrina. Cibicidoides wuellerstorfi is a faithful recorder of bottom water delta13C in the Canary Islands regions. The mean delta13C signal of this species is not significantly influenced by constant high organic matter fluxes. The species-specific offset between live and dead specimens is the same.
Resumo:
Benthic and selected planktic foraminifera and stable isotope records were determined in a piston core from the Gulf of Aden, NW Arabian Sea that spans the last 530 ka. The benthic foraminifera were grouped into four principal assemblages using Q-mode Principal Component Analyses. Comparison of each of these assemblages with the fauna of the nearby regions enabled us to identify their specific environmental requirements as a function of variability in food supply and strength of the oxygen minimum zone and by that to use them as indicators of surface water productivity. The benthic foraminiferal productivity indicators coupled with the record of Globigerina bulloides, a planktic foraminifer known to be sensitive to productivity changes in the region, all indicate higher productivity during glacial intervals and productivity similar to present or even reduced during interglacial stages. This trend is opposite to the productivity pattern related to the SW summer monsoon of the Arabian Sea and indicates the role of the NE winter monsoon on the productivity of the Gulf of Aden. A period of exceptionally enhanced productivity is recognized in the Gulf of Aden region between ~60 and 13 kyr indicating the intensification of the NE winter monsoon to its maximal activity. Contemporaneous indication of increased productivity in other parts of the Arabian Sea, unexplained so far by the SW summer monsoon variability, might be related to the intensification of the NE winter monsoon. Another prominent event of high productivity, second in its extent to the last glacial productivity event is recognized between 430 and 460 kyr. These two events seem to correspond to periods of similar orbital positioning of rather low precession (and eccentricity) amplitude for a relatively long period. Glacial boundary conditions seem to control to a large extent the NE winter monsoon variability as also indicated by the dominance of the 100 ka cycle in the investigated time series. Secondary in their importance are the 23 and 41 ka cycles which seem also to contribute to the NE monsoonal variability. Following the identification of productivity events related to the NE winter monsoon in the Gulf of Aden, it is possible now to extend this observation to other parts of the Arabian Sea and consider the contribution of this monsoonal system to the productivity fluctuations preserved in the sedimentary records.
Resumo:
Dead benthic foraminiferal faunas (> 150 μm) from the Rhône prodelta (Gulf of Lions, NW Mediterranean) were analysed at 41 stations (15–100 m water depth) sampled in June 2005 and September 2006, and compared to the living faunas investigated during previous studies at the same stations. The comparison between dead and living assemblages enhances the understanding of taphonomic processes that may modify the composition of the dead faunas in this area. We observed a loss of individuals from living to dead assemblages of species characterised by a fairly fragile test and therefore more prone to fragmentation or dissolution (e.g., Bolivina alata, Quinqueloculina tenuicollis). Allochthonous dead and/or live specimens may be transported to some parts of the prodelta, particularly the shallowest sites where hydrodynamic processes (i.e., river flood, storm swells, longshore currents) are more intense. These specimens may originate from relict deltaic structures (e.g., Elphidium spp. from the lobe of Bras de Fer) or from surrounding areas (e.g., Ammonia beccarii forma beccarii from the river). Opportunistic species (e.g., Bulimina marginata, Cassidulina carinata) characterised by high reproductive rates have much higher relative abundances in the dead than in the living fauna. Cluster analyses based on dead foraminiferal assemblages divide our study area into four main thanatofacies directly related to distinct local environmental conditions prevailing in the prodelta. Close to the river mouth, Ammonia beccarii forma beccarii and Ammonia tepida are found in sediments subject to a high riverine influence (i.e., bottom currents, high organic and inorganic material input of continental origin). Elphidium species are abundant in the silty-sandy relict deltaic lobe west of the river mouth which is characterised by strong longshore currents that disturb the benthic environment. Nonion fabum, Rectuvigerina phlegeri and Valvulineria bradyana are found along the coast west of the Rhône River mouth, in the area defined as the “river plume” thanatofacies. In the more stable and deeper prodeltaic area, species known to feed on fresh phytodetritus (e.g., Bulimina aculeata/marginata, C. carinata, Hyalinea balthica) dominate the faunas. Since only minor variations in species relative abundances and spatial distributional patterns are observed between the living and the dead faunas, we consider that our thanatofacies have not been influenced by substantial transport of dead tests. This suggests that fossil benthic foraminifera can provide a reliable tool for investigating the development of the palaeo-Rhône prodelta
Resumo:
A 7.38 m-long sediment core was collected from the eastern part of the Rhone prodelta (NW Mediterranean) at 67 m water depth. A multi-proxy study (sedimentary facies, benthic foraminifera and ostracods, clay mineralogy, and major elements from XRF) provides a multi-decadal to century-scale record of climate and sea-level changes during the Holocene. The early Holocene is marked by alternative silt and clay layers interpreted as distal tempestites deposited in a context of rising sea level. This interval contains shallow infra-littoral benthic meiofauna (e.g. Pontocythere elongata, Elphidium spp., Quinqueloculina lata) and formed between ca. 20 and 50 m water depth. The middle Holocene (ca. 8.3 to 4.5 ka cal. BP), is characterized, at the core site, by a period of sediment starvation (accumulation rate of ca. 0.01 cm yr−1) resulting from the maximum landward shift of the shoreline and the Rhone outlet(s). From a sequence stratigraphic point of view, this condensed interval, about 35 cm-thick, is a Maximum Flooding Surface that can be identified on seismic profiles as the transition between delta retrogradation and delta progradation. It is marked by very distinct changes in all proxy records. Following the stabilization of the global sea level, the late Holocene is marked by the establishment of prodeltaic conditions at the core site, as shown by the lithofacies and by the presence of benthic meiofauna typical of the modern Rhone prodelta (e.g. Valvulineria bradyana, Cassidulina carinata, Bulimina marginata). Several periods of increased fluvial discharge are also emphasized by the presence of species commonly found in brackish and shallow water environments (e.g. Leptocythere). Some of these periods correspond to the multi-decadal to centennial late Holocene humid periods recognized in Europe (i.e. the 2.8 ka event and the Little Ice Age). Two other periods of increased runoffs at ca. 1.3 and 1.1 ka cal. BP are recognized, and are likely to reflect periods of regional climate deterioration that are observed in the Rhone watershed.