922 resultados para Ca2 -related genes
Resumo:
The function(s) of the genes (PKD1 and PKD2) responsible for the majority of cases of autosomal dominant polycystic kidney disease is unknown. While PKD1 encodes a large integral membrane protein containing several structural motifs found in known proteins involved in cell–cell or cell–matrix interactions, PKD2 has homology to PKD1 and the major subunit of the voltage-activated Ca2+ channels. We now describe sequence homology between PKD2 and various members of the mammalian transient receptor potential channel (TRPC) proteins, thought to be activated by G protein-coupled receptor activation and/or depletion of internal Ca2+ stores. We show that PKD2 can directly associate with TRPC1 but not TRPC3 in transfected cells and in vitro. This association is mediated by two distinct domains in PKD2. One domain involves a minimal region of 73 amino acids in the C-terminal cytoplasmic tail of PKD2 shown previously to constitute an interacting domain with PKD1. However, distinct residues within this region mediate specific interactions with TRPC1 or PKD1. The C-terminal domain is sufficient but not necessary for the PKD2–TRPC1 association. A more N-terminal domain located within transmembrane segments S2 and S5, including a putative pore helical region between S5 and S6, is also responsible for the association. Given the ability of the TRPC to form functional homo- and heteromultimeric complexes, these data provide evidence that PKD2 may be functionally related to TRPC proteins and suggest a possible role of PKD2 in modulating Ca2+ entry in response to G protein-coupled receptor activation and/or store depletion.
Resumo:
β subunits of voltage-gated Ca2+ channels are encoded in four genes and display additional molecular diversity because of alternative splicing. At the functional level, all forms are very similar except for β2a, which differs in that it does not support prepulse facilitation of α1C Ca2+ channels, inhibits voltage-induced inactivation of neuronal α1E Ca2+ channels, and is more effective in blocking inhibition of α1E channels by G protein-coupled receptors. We show that the distinguishing properties of β2a, rather than interaction with a distinct site of α1, are because of the recently described palmitoylation of cysteines in positions three and four, which also occurs in the Xenopus oocyte. Essentially, all of the distinguishing features of β2a were lost in a mutant that could not be palmitoylated [β2a(Cys3,4Ser)]. Because protein palmitoylation is a dynamic process, these findings point to the possibility that regulation of palmitoylation may contribute to activity-dependent neuronal and synaptic plasticity. Evidence is presented that there may exist as many as three β2 splice variants differing only in their N-termini.
Resumo:
After infection with the digenetic trematode Echinostoma paraensei, hemolymph of the snail Biomphalaria glabrata contains lectins comprised of 65-kDa subunits that precipitate polypeptides secreted by E. paraensei intramolluscan larvae. Comparable activity is lacking in hemolymph of uninfected snails. Three different cDNAs with sequence similarities to peptides derived from the 65-kDa lectins were obtained and unexpectedly found to encode fibrinogen-related proteins (FREPs). These FREPs also contained regions with sequence similarity to Ig superfamily members. B. glabrata has at least five FREP genes, three of which are expressed at increased levels after infection. Elucidation of components of the defense system of B. glabrata is relevant because this snail is an intermediate host for Schistosoma mansoni, the most widely distributed causative agent of human schistosomiasis. These results are novel in suggesting a role for invertebrate FREPs in recognition of parasite-derived molecules and also provide a model for investigating the diversity of molecules functioning in nonself-recognition in an invertebrate.
Resumo:
In an attempt to quantify the rates of protein sequence divergence in Drosophila, we have devised a screen to differentiate between slow and fast evolving genes. We find that over one-third of randomly drawn cDNAs from a Drosophila melanogaster library do not cross-hybridize with Drosophila virilis DNA, indicating that they evolve with a very high rate. To determine the evolutionary characteristics of such protein sequences, we sequenced their homologs from a more closely related species (Drosophila yakuba). The amino acid substitution rates among these cDNAs are among the fastest known and several are only about 2-fold lower than the corresponding values for silent substitutions. An analysis of within-species polymorphisms for one of these sequences reveals an exceptionally high number of polymorphic amino acid positions, indicating that the protein is not under strong negative selection. We conclude that the Drosophila genome harbors a substantial proportion of genes with a very high divergence rate.
Resumo:
Histone mRNAs are naturally intronless and accumulate efficiently in the cytoplasm. To learn whether there are cis-acting sequences within histone genes that allow efficient cytoplasmic accumulation of RNAs, we made recombinant constructs in which sequences from the mouse H2a gene were cloned into a human β-globin cDNA. By using transient transfection and RNase protection analysis, we demonstrate here that a 100-bp sequence within the H2a coding region permits efficient cytoplasmic accumulation of the globin cDNA transcripts. We also show that this sequence appears to suppress splicing and can functionally replace Rev and the Rev-responsive element in the cytoplasmic accumulation of unspliced HIV-1-related mRNAs. Like the Rev-responsive element, this sequence acts in an orientation-dependent manner. We thus propose that the sequence identified here may be a member of the cis-acting elements that facilitate the cytoplasmic accumulation of naturally intronless gene transcripts.
Resumo:
Neurotoxicity induced by overstimulation of N-methyl-d-aspartate (NMDA) receptors is due, in part, to a sustained rise in intracellular Ca2+; however, little is known about the ensuing intracellular events that ultimately result in cell death. Here we show that overstimulation of NMDA receptors by relatively low concentrations of glutamate induces apoptosis of cultured cerebellar granule neurons (CGNs) and that CGNs do not require new RNA or protein synthesis. Glutamate-induced apoptosis of CGNs is, however, associated with a concentration- and time-dependent activation of the interleukin 1β-converting enzyme (ICE)/CED-3-related protease, CPP32/Yama/apopain (now designated caspase 3). Further, the time course of caspase 3 activation after glutamate exposure of CGNs parallels the development of apoptosis. Moreover, glutamate-induced apoptosis of CGNs is almost completely blocked by the selective cell permeable tetrapeptide inhibitor of caspase 3, Ac-DEVD-CHO but not by the ICE (caspase 1) inhibitor, Ac-YVAD-CHO. Western blots of cytosolic extracts from glutamate-exposed CGNs reveal both cleavage of the caspase 3 substrate, poly(ADP-ribose) polymerase, as well as proteolytic processing of pro-caspase 3 to active subunits. Our data demonstrate that glutamate-induced apoptosis of CGNs is mediated by a posttranslational activation of the ICE/CED-3-related cysteine protease caspase 3.
Resumo:
To determine the role of intracellular Ca2+ in compaction, the first morphogenetic event in embryogenesis, we analyzed preimplantation mouse embryos under several decompacting conditions, including depletion of extracellular Ca2+, blocking of Ca2+ channels, and inhibition of microfilaments, calmodulin, and intracellular Ca2+ release. Those treatments induced decompaction of mouse morulae and simultaneously induced changes in cytosolic free Ca2+ concentration and deregionalization of E-cadherin and fodrin. When morulae were allowed to recompact, the location of both proteins recovered. In contrast, actin did not change its cortical location with compaction nor with decompaction-recompaction. Calmodulin localized in areas opposite to cell–cell contacts in eight-cell stage embryos before and after compaction. Inhibition of calmodulin with trifluoperazine induced its delocalization while morulae decompacted. A nonspecific rise of intracellular free Ca2+ provoked by ionomycin did not affect the compacted shape. Moreover, the same decompacting treatments when applied to uncompacted embryos did not produce any change in intracellular Ca2+. Our results demonstrate that in preimplantation mouse embryos experimentally induced stage-specific changes of cell shape are accompanied by changes of intracellular free Ca2+ and redistribution of the cytoskeleton-related proteins E-cadherin, fodrin, and calmodulin. We conclude that intracellular Ca2+ specifically is involved in compaction and probably regulates the function and localization of cytoskeleton elements.
Resumo:
We cloned two hemoglobin genes from Arabidopsis thaliana. One gene, AHB1, is related in sequence to the family of nonsymbiotic hemoglobin genes previously identified in a number of plant species (class 1). The second hemoglobin gene, AHB2, represents a class of nonsymbiotic hemoglobin (class 2) related in sequence to the symbiotic hemoglobin genes of legumes and Casuarina. The properties of these two hemoglobins suggest that the two families of nonsymbiotic hemoglobins may differ in function from each other and from the symbiotic hemoglobins. AHB1 is induced, in both roots and rosette leaves, by low oxygen levels. Recombinant AHB1 has an oxygen affinity so high as to make it unlikely to function as an oxygen transporter. AHB2 is expressed at a low level in rosette leaves and is low temperature-inducible. AHB2 protein has a lower affinity for oxygen than AHB1 but is similar to AHB1 in having an unusually low, pH-sensitive oxygen off-rate.
Resumo:
The trp gene of Drosophila encodes a subunit of a class of Ca2+-selective light-activated channels that carry the bulk of the phototransduction current. Transient receptor potential (TRP) homologs have been identified throughout animal phylogeny. In vertebrates, TRP-related channels have been suggested to mediate “store-operated Ca2+ entry,” which is important in Ca2+ homeostasis in a wide variety of cell types. However, the mechanisms of activation and regulation of the TRP channel are not known. Here, we report on the Drosophila inaF gene, which encodes a highly eye-enriched protein, INAF, that appears to be required for TRP channel function. A null mutation in this gene significantly reduces the amount of the TRP protein and, in addition, specifically affects the TRP channel function so as to nearly shut down its activity. The inaF mutation also dramatically suppresses the severe degeneration caused by a constitutively active mutation in the trp gene. Although the reduction in the amount of the TRP protein may contribute to these phenotypes, several lines of evidence support the view that inaF mutations also more directly affect the TRP channel function, suggesting that the INAF protein may have a regulatory role in the channel function.
Resumo:
The pregnancy-associated glycoproteins (PAGs) are structurally related to the pepsins, thought to be restricted to the hooved (ungulate) mammals and characterized by being expressed specifically in the outer epithelial cell layer (chorion/trophectoderm) of the placenta. At least some PAGs are catalytically inactive as proteinases, although each appears to possess a cleft capable of binding peptides. By cloning expressed genes from ovine and bovine placental cDNA libraries, by Southern genomic blotting, by screening genomic libraries, and by using PCR to amplify portions of PAG genes from genomic DNA, we estimate that cattle, sheep, and most probably all ruminant Artiodactyla possess many, possibly 100 or more, PAG genes, many of which are placentally expressed. The PAGs are highly diverse in sequence, with regions of hypervariability confined largely to surface-exposed loops. Nonsynonymous (replacement) mutations in the regions of the genes coding for these hypervariable loop segments have accumulated at a higher rate than synonymous (silent) mutations. Construction of distance phylograms, based on comparisons of PAG and related aspartic proteinase amino acid sequences, suggests that much diversification of the PAG genes occurred after the divergence of the Artiodactyla and Perissodactyla, but that at least one gene is represented outside the hooved species. The results also suggest that positive selection of duplicated genes has acted to provide considerable functional diversity among the PAGs, whose presence at the interface between the placenta and endometrium and in the maternal circulation indicates involvement in fetal–maternal interactions.
Resumo:
Large-scale genetic screens for mutations affecting early neurogenesis of vertebrates have recently been performed with an aquarium fish, the zebrafish. Later stages of neural morphogenesis have attracted less attention in small fish species, partly because of the lack of molecular markers of developing structures that may facilitate the detection of discrete structural alterations. In this context, we report the characterization of Ol-Prx 3 (Oryzias latipes-Prx 3). This gene was isolated in the course of a large-scale screen for brain cDNAs containing a highly conserved DNA binding region, the homeobox helix-three. Sequence analysis revealed that this gene belongs to another class of homeobox genes, together with a previously isolated mouse ortholog, called OG-12 [Rovescalli, A. C., Asoh, S. & Nirenberg, M. (1996) Proc. Natl. Acad. Sci. USA 93, 10691–10696] and with the human SHOX gene [Rao, E., Weiss, B., Fukami, M., Rump, A., Niesler, B., et al. (1997) Nat. Genet. 16, 54–62], thought to be involved in the short-stature phenotype of Turner syndrome patients. These three genes exhibit a moderate level of identity in the homeobox with the other genes of the paired-related (PRX) gene family. Ol-Prx 3, as well as the PRX genes, are expressed in various cartilaginous structures of head and limbs. These genes might thus be involved in common regulatory pathways during the morphogenesis of these structures. Moreover, this paper reports a complex and monophasic pattern of Ol-Prx 3 expression in the central nervous system, which differs markedly from the patterns reported for the PRX genes, Prx 3 excluded: this gene begins to be expressed in a variety of central nervous system territories at late neurula stage. Strikingly, it remains turned on in some of the derivatives of each territory during the entire life of the fish. We hope this work will thus help identify common features for the PRX 3 family of homeobox genes.
Resumo:
In view of the well-established role of neurohypophysial hormones in osmoregulation of terrestrial vertebrates, lungfishes are a key group for study of the molecular and functional evolution of the hypothalamo-neurohypophysial system. Here we report on the primary structure of the precursors encoding vasotocin (VT) and [Phe2]mesotocin ([Phe2]MT) of the Australian lungfish, Neoceratodus forsteri. Genomic sequence analysis and Northern blot analysis confirmed that [Phe2]MT is a native oxytocin family peptide in the Australian lungfish, although it has been reported that the lungfish neurohypophysis contains MT. The VT precursor consists of a signal peptide, VT, that is connected to a neurophysin by a Gly-Lys-Arg sequence, and a copeptin moiety that includes a Leu-rich core segment and a glycosylation site. In contrast, the [Phe2]MT precursor does not contain a copeptin moiety. These structural features of the lungfish precursors are consistent with those in tetrapods, but different from those in teleosts where both VT and isotocin precursors contain a copeptin-like moiety without a glycosylation site at the carboxyl terminals of their neurophysins. Comparison of the exon/intron organization also supports homology of the lungfish [Phe2]MT gene with tetrapod oxytocin/MT genes, rather than with teleost isotocin genes. Moreover, molecular phylogenetic analysis shows that neurohypophysial hormone genes of the lungfish are closely related to those of the toad. The present results along with previous morphological findings indicate that the hypothalamo-neurohypophysial system of the lungfish has evolved along the tetrapod lineage, whereas the teleosts form a separate lineage, both within the class Osteichthyes.
Resumo:
To isolate genes involved in morphogenic aspects of testis development, and which may act in cell signaling pathways downstream of the testis-determining gene Sry, we have developed a modified mRNA differential display method named signal peptide differential display. It was used to target those genes that encode proteins having a signal peptide sequence. By using this method, we isolated a gene named testatin. This gene was found to be related to a group of genes that encodes cysteine protease inhibitors known as cystatins. Cystatins and their target proteases have been associated with tumor formation and metastasis, but also are involved in natural tissue remodeling events such as bone resorption and embryo implantation. We show that testatin expression is restricted to fetal gonads and adult testis. Furthermore, testatin is expressed during testis cord formation in pre-Sertoli cells, believed to be the site of Sry action, at a time immediately after the peak of Sry expression. This finding suggests that testatin might be activated by transcription factors that are known to orchestrate the early testis development pathway. This gene therefore represents one of the putative downstream targets likely to have an essential role in tissue reorganization during early testis development.
Resumo:
Wnt family members are critical to many developmental processes, and components of the Wnt signaling pathway have been linked to tumorigenesis in familial and sporadic colon carcinomas. Here we report the identification of two genes, WISP-1 and WISP-2, that are up-regulated in the mouse mammary epithelial cell line C57MG transformed by Wnt-1, but not by Wnt-4. Together with a third related gene, WISP-3, these proteins define a subfamily of the connective tissue growth factor family. Two distinct systems demonstrated WISP induction to be associated with the expression of Wnt-1. These included (i) C57MG cells infected with a Wnt-1 retroviral vector or expressing Wnt-1 under the control of a tetracyline repressible promoter, and (ii) Wnt-1 transgenic mice. The WISP-1 gene was localized to human chromosome 8q24.1–8q24.3. WISP-1 genomic DNA was amplified in colon cancer cell lines and in human colon tumors and its RNA overexpressed (2- to >30-fold) in 84% of the tumors examined compared with patient-matched normal mucosa. WISP-3 mapped to chromosome 6q22–6q23 and also was overexpressed (4- to >40-fold) in 63% of the colon tumors analyzed. In contrast, WISP-2 mapped to human chromosome 20q12–20q13 and its DNA was amplified, but RNA expression was reduced (2- to >30-fold) in 79% of the tumors. These results suggest that the WISP genes may be downstream of Wnt-1 signaling and that aberrant levels of WISP expression in colon cancer may play a role in colon tumorigenesis.
Resumo:
The achaete-scute genes encode essential transcription factors in normal Drosophila and vertebrate nervous system development. Human achaete-scute homolog-1 (hASH1) is constitutively expressed in a human lung cancer with neuroendocrine (NE) features, small cell lung cancer (SCLC), and is essential for development of the normal pulmonary NE cells that most resemble this neoplasm. Mechanisms regulating achaete-scute homolog expression outside of Drosophila are presently unclear, either in the context of the developing nervous system or in normal or neoplastic cells with NE features. We now provide evidence that the protein hairy-enhancer-of-split-1 (HES-1) acts in a similar manner as its Drosophila homolog, hairy, to transcriptionally repress achaete-scute expression. HES-1 protein is detected at abundant levels in most non-NE human lung cancer cell lines which lack hASH1 but is virtually absent in hASH1-expressing lung cancer cells. Moreover, induction of HES-1 in a SCLC cell line down-regulates endogenous hASH1 gene expression. The repressive effect of HES-1 is directly mediated by binding of the protein to a class C site in the hASH1 promoter. Thus, a key part of the process that determines neural fate in Drosophila is conserved in human lung cancer cells. Furthermore, modulation of this pathway may underlie the constitutive hASH1 expression seen in NE tumors such as SCLC, the most virulent human lung cancer.