869 resultados para CVD diamond films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin-coated films of cellulose acetate (CA), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB) and carboxymethylcellulose acetate butyrate (CMCAB) have been characterized by ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The films were spin-coated onto silicon wafers, a polar surface. Mean thickness values were determined by means of ellipsometry and AFM as a function of polymer concentration in solutions prepared either in acetone or in ethyl acetate (EA), both are good solvents for the cellulose esters. The results were discussed in the light of solvent evaporation rate and interaction energy between substrate and solvent. The effects of annealing and type of cellulose ester on film thickness, film morphology, surface roughness and surface wettability were also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of MnO(2) nanoparticles were grown using the layer-by-layer method with poly (diallyldimetylammonium) as the intercalated layer. The film growth was followed by UV-vis, electrochemical quartz crystal microbalance (EQCM), and atomic force microscopy. Linear growth due to electrostatic immobilization of layers was observed up to 30 bilayers, but electrical connectivity was maintained only for 12 MnO(2)/PPDA bilayers. The electrochemical characterization of this film in 1-butyl-2,3-dimethyl-imidazolium (BMMI) bis(trifluoromethanesulfonyl)imide (TFSI) (BMMITFSI) with and without addition of a lithium salt indicated a higher electrochemical response of the nanostructured electrode in the lithium-containing electrolyte. On the basis of EQCM experiments, it was possible to confirm that the charge compensation process is achieved mainly by the TFSI anion at short times (<2 s) and by BMMI and lithium cations at longer times. The fact that large ions like TFSI and BMMI participate in the electroneutrality is attributed to the redox reaction that occurs at the superficial sites and to the high concentration of these species compared to that of lithium cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe-Pd alloy films have been prepared by electrochemical deposition from an alkaline electrolyte containing Fe sulfate, Pd chloride and 5-sulfosalicylic acid onto polycrystalline titanium substrates. The as-deposited films were nanocrystalline and magnetically soft (coercivity similar to 25 Oe). L1(0) Fe-Pd films with a (111) preferred orientation were obtained by post-deposition thermal annealing of films with composition about 37 at% Fe in an (Ar + 5% H-2) gas flow at 500 degrees C. Such films exhibit hard magnetic properties, with a coercivity up to 1880 Oe, and a slightly anisotropic magnetic response, with a larger in-plane remanence. Preliminary magnetic investigations support magnetization switching through pinning of domain walls. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 thin films, employed in dye-sensitized solar cells, were prepared by the sol-gel method or directly by Degussa P25 oxide and their surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effect of adsorption of the cis-[Ru(dcbH(2))(2)(NCS)(2)] dye, N3, on the surface of films was investigated. From XPS spectra taken before and after argon-ion sputtering procedure, the surface composition of inner and outer layers of sensitized films was obtained and a preferential etching of Ru peak in relation to the Ti and N ones was identified. The photoelectrochemical parameters were also evaluated and rationalized in terms of the morphological characteristics of the films. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although cellulose acetates, CAs, are extensively employed there is scant information about the systematic dependence of their properties on their degree of substitution, DS; this is the subject of the present work. Nine CAs samples, DS from 0.83 to 3.0 were synthesized; their films were prepared. The following solvatochromic probes have been employed in order to determine the empirical polarity, E (T)(33); ""acidity, alpha""; ""basicity, beta"", and ""dipolarity/polarizability, pi*"" of the casted films: 2,6-dichloro-4-(2,4,6-triphenyl-pyridinium-1-yl) phenolate, WB; 4-nitroaniline; 4-nitroanisole; 4-nitro-N,N-dimethylaniline; 2,6-diphenyl-4-(2,4,6-triphenyl-pyridinium-1-yl)phenolate, RB. Additionally, two systems, ethanol plus ethyl acetate (EtOH-EtAc), and cellulose plus cellulose triacetate, CTA, were employed as models for CAs of different DS. Regarding the model systems, the following was observed: (i) For EtOH-EtAc, the dependence of all solvatochromic parameters on the ""equivalent-DS"" of the binary mixture was non-linear because of preferential solvation; (ii) The dependence of E (T)(33) on equivalent DS of the cellulose-CTA films is linear, but the slope is smaller than that of the corresponding plot for CAs. This is attributed to the more efficient hydrogen bonding in the model system, a conclusion corroborated by IR measurements. The dependence of solvatochromic parameters of CAs on their DS is described by the simple equations; a consequence of the substitution of the OH by the ester group. The thermal properties of bulk CAs samples were investigated by DSC and TGA; their dependence on DS is described by simple equations. The relevance of these data to the processing and applications of CAs is briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanosecond laser flash photolysis has been used to investigate injection and back electron transfer from the complex [(Ru-(bpy)(2)(4,4`-(PO(3)H(2))(2)bpy)](2+) surface-bound to TiO(2) (TiO(2)-Ru(II)). The measurements were conducted under conditions appropriate for water oxidation catalysis by known single-site water oxidation catalysts. Systematic variations in average lifetimes for back electron transfer, - were observed with changes in pH, surface coverage, incident excitation intensity, and applied bias. The results were qualitatively consistent with a model involving rate-limiting thermal activation of injected electrons from trap sites to the conduction band or shallow trap sites followed by site-to-site hopping and interfacial electron transfer, TiO(2)(e(-))-Ru(3+) -> TiO(2)-Ru(2+). The appearance of pH-dependent decreases in the efficiency of formation of TiO(2)-Ru(3+) and in incident-photon-to-current efficiencies with the added reductive scavenger hydroquinone point to pH-dependent back electron transfer processes on both the sub-nanosecond and millisecond-microsecond time scales, which could be significant in limiting long-term storage of multiple redox equivalents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead iodide thin films were fabricated using the spray pyrolysis technique. Milli-Q water and N.N-dimethylformamide were used as solvents under varying deposition conditions. Films as thick as 60 mu m were obtained. The optical and structural properties of the samples were investigated using Photoluminescence, Raman scattering, X-ray diffraction, and Scanning electron microscopy. In addition, the study included also the electronic properties which were investigated by measuring the dark conductivity as a function of temperature. The deposition technique seems to be promising for the development of thick films to be used in medical imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the effect of doping concentration and depth profile of Cu atoms on the photocatalytic and surface properties of TiO(2) films were studied. TiO(2) films of about 200 nn thickness were deposited on glass substrates on which a thin Cu layer (5 nm) was deposited. The films were annealed during 1 s to 100 degrees C and 400 degrees C, followed by chemical etching of the Cu film. The grazing incidence X-ray fluorescence measurements showed a thermal induced migration of Cu atoms to depths between 7 and 31 nm. The X-ray photoelectron spectroscopy analysis detected the presence of TiO(2), Cu(2)O and Cu(0) phases and an increasing Cu content with the annealing temperature. The change of the surface properties was monitored by the increasing red-shift and absorption of the ultraviolet-visible spectra. Contact angle measurements revealed the formation of a highly hydrophilic surface for the film having a medium Cu concentration. For this sample photocatalytic assays, performed by methylene blue discoloration, show the highest activity. The proposed mechanism of the catalytic effect, taking place on Ti/Cu sites, is supported by results obtained by theoretical calculations. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Shwachman-Bodian-Diamond syndrome protein (SBDS) is a member of a highly conserved protein family of not well understood function, with putative orthologues found in different organisms ranging from Archaea, yeast and plants to vertebrate animals. The yeast orthologue of SBDS, Sdo1p, has been previously identified in association with the 60S ribosomal subunit and is proposed to participate in ribosomal recycling. Here we show that Sdo1p interacts with nucleolar rRNA processing factors and ribosomal proteins, indicating that it might bind the pre-60S complex and remain associated with it during processing and transport to the cytoplasm. Corroborating the protein interaction data, Sdo1p localizes to the nucleus and cytoplasm and co-immunoprecipitates precursors of 60S and 40S subunits, as well as the mature rRNAs. Sdo1p binds RNA directly, suggesting that it may associate with the ribosomal subunits also through RNA interaction. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical oxidation of promethazine hydrochloride was made on highly boron-doped diamond electrodes. Cyclic voltammetry experiments showed that the oxidation mechanisms involved the formation of an adsorbed product that is more readily oxidized, producing a new peak with lower potential values whose intensity can be increased by applying the accumulation potential for given times. The parameters were optimized and the highest current intensities were obtained by applying +0.78 V for 30 seconds. The square-wave adsorptive voltammetry results obtained in BR buffer showed two well-defined peaks, dependent on the pH and on the voltammetric parameters. The best responses were obtained at pH 4.0, frequency of 50 s(-1), step of 2 mV, and amplitude of 50 mV. Under these conditions, linear responses were obtained for concentrations from 5.96 x 10(-7) to 4.76 x 10(-6) mol L-1, and calculated detection limits of 2.66 x 10(-8) mol L-1 (8.51 mu g L-1) for peak 1 and of 4.61 x 10(-8) mol L-1 (14.77 mu g L-1) for peak 2. The precision and accuracy were evaluated by repeatability and reproducibility experiments, which yielded values of less than 5.00% for both voltammetric peaks. ne applicability of this procedure was tested on commercial formulations of promethazine hydrochloride by observing the stability, specificity, recovery and precision of the procedure in complex samples. All results obtained were compared to recommended procedure by British Pharmacopeia. The voltammetric results indicate that the proposed procedure is stable and sensitive, with good reproducibility even when the accumulation steps involve short times. It is therefore very suitable for the development of the electroanalytical procedure, providing adequate sensitivity and a reliable method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition and characterization of Se films doped with Pb underpotentially deposited (UPD) ad-atoms was studied in this work. The employed experimental techniques were cyclic voltammetry, chronoamperometry, electrochemical impedance spectroscopy, UV-vis spectroscopy and atomic force microscopy. The initial deposition of Se film by chronoamperometry yielded a thin film composed of approximately 700 layers. The Pb UPD on Se was achieved by chronoamperometry in a potential value previously determined in voltammetric experiments. This deposition yielded a deposition charge of approximately 7.5% of the total one. The film resistance altered from 320 Omega cm(2) for Se to 65 Omega cm(2) for the Se/Pb one. Flat band potential values and number of acceptors and donors were also calculated for both films and the values obtained were + 0.95 and -0.51 V for Se and Se/Pb, respectively. The Se coating presented 1.2 x 10(17) cm(3) acceptors while the Se/Pb one presented 3.2 x 10(17) cm(3) donors. The band gap values for both films were 2.4 eV and 1.9 eV, correspondingly. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, films based on linter cellulose and chitosan were prepared using an aqueous solution of sodium hydroxide (NaOH)/thiourea as the solvent system. The dissolution process of cellulose and chitosan in NaOH/thiourea aqueous solution was followed by the partial chain depolymerization of both biopolymers, which facilitates their solubilization. Biobased films with different chitosan/cellulose ratios were then elaborated by a casting method and subsequent solvent evaporation. They were characterized by X-ray analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis, and tests related to tensile strength and biodegradation properties. The SEM images of the biofilms with 50/50 and 60/40 ratio of chitosan/cellulose showed surfaces more wrinkled than the others. The AFM images indicated that higher the content of chitosan in the biobased composite film, higher is the average roughness value. It was inferred through thermal analysis that the thermal stability was affected by the presence of chitosan in the films; the initial temperature of decomposition was shifted to lower levels in the presence of chitosan. Results from the tests for tensile strength indicated that the blending of cellulose and chitosan improved the mechanical properties of the films and that an increase in chitosan content led to production of films with higher tensile strength and percentage of elongation. The degradation study in a simulated soil showed that the higher the crystallinity, the lower is the biodegradation rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concern related to the environmental degradation and to the exhaustion of natural resources has induced the research on biodegradable materials obtained from renewable sources, which involves fundamental properties and general application. In this context, we have fabricated thin films of lignins, which were extracted from sugar cane bagasse via modified organosolv process using ethanol as organic solvent. The films were made using the vacuum thermal evaporation technique (PVD, physical vapor deposition) grown up to 120 nm. The main objective was to explore basic properties such as electrical and surface morphology and the sensing performance of these lignins as transducers. The PVD film growth was monitored via ultraviolet-visible (UV-vis) absorption spectroscopy and quartz crystal microbalance, revealing a linear relationship between absorbance and film thickness. The 120 nm lignin PVD film morphology presented small aggregates spread all over the film surface on the nanometer scale (atomic force microscopy, AFM) and homogeneous on the micrometer scale (optical microscopy). The PVD films were deposited onto Au interdigitated electrode (IDE) for both electrical characterization and sensing experiments. In the case of electrical characterization, current versus voltage (I vs V) dc measurements were carried out for the Au IDE coated with 120 nm lignin PVD film, leading to a conductivity of 3.6 x 10(-10) S/m. Using impedance spectroscopy, also for the Au IDE coated with the 120 nm lignin PVD film, dielectric constant of 8.0, tan delta of 3.9 x 10(-3)) and conductivity of 1.75 x 10(-9) S/m were calculated at 1 kHz. As a proof-of-principle, the application of these lignins as transducers in sensing devices was monitored by both impedance spectroscopy (capacitance vs frequency) and I versus time dc measurements toward aniline vapor (saturated atmosphere). The electrical responses showed that the sensing units are sensible to aniline vapor with the process being reversible. AFM images conducted directly onto the sensing units (Au IDE coated with 120 nm lignin PVD film) before and after the sensing experiments showed a decrease in the PVD film roughness from 5.8 to 3.2 nm after exposing to aniline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconducting films of (n-type) ZnSe and (p-type) nitrogen-doped ZnSe were electrodeposited by a linear-sweep voltammetric technique on to a substrate of fluorine-tin oxide (FM) glass ceramics. The films were characterized by scanning electron microscopy, energy-dispersive X-ray analysis and grazing-incidence X-ray diffraction. The results indicated that the material was deposited uniformly over the substrate, forming clusters when the Zn content of the bath was 0.1 mol L(-1) and a film when it was 0.2 or 0.3 mol L(-1). The effectiveness of doping the films with nitrogen by adding ammonium sulfate to the deposition solution was assessed by measuring the film-electrolyte interface capacitance (C) at various applied potentials (E(ap)) and plotting Mott-Schottky curves (C(-2) vs E(ap)), whose slope sign was used to identify p-type ZnSe. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmentally friendly biocomposites were successfully prepared by dissolving chitosan and cellulose in a NaOH/thiourea solvent with subsequent heating and film casting. Under the considered conditions, NaOH/thiourea led to chain depolymerization of both biopolymers without a dramatic loss of film forming capacities. Compatibility of both biopolymers in the biocomposite was firstly assessed through scanning electron microscopy, revealing an intermediate organization between cellulose fiber network and smoothness of pure chitosan. DSC analyses led to exothermic peaks close to 285 and 315 degrees C for the biocomposite, compared to the exothermic peaks of chitosan (275 degrees C) and cellulose (265 and 305 degrees C), suggesting interactions between chitosan and cellulose. Contact angle analyses pointed out the deformation that can occur at the surface due to the high affinity of the;e materials with water. T(2) NMR relaxometry behavior of biocomposites appeared to be dominated by chitosan. Other properties of films, as crystallinity, water sorption isotherms, among others, are also discussed. (C) 2010 Published by Elsevier Ltd.