984 resultados para COUPLING REACTIONS
Resumo:
The N ∗(1535) resonance contributions to the pn → dφ reaction are evaluated in an effective Lagrangian model. The π-, η-, and ρ-meson exchange are considered. It is shown that the contributions from π- and ρ-meson exchange are dominant, while the contribution from η-meson exchange is negligibly small. Our theoretical results reproduce the experimental data of both total cross section and angular distribution well. This is more evidence that the N ∗(1535) resonance has a large s ¯s component leading to a large coupling to Nφ, which may be the real origin of the Okubo-Zweig-Iizuka rule violation in the πN and pN reactions.
Resumo:
In an effective Lagrangian model we find that the N*(1535) resonance contribution might be important to the interpretation of the present data of the pp -> pp eta' and pn -> d phi reactions. The strong coupling strength of N*(1.535) to eta' and phi are indicated, and the possible implication to the intrinsic component of N*(1535) is explored. These results may provide hints to the real origin of the OZI rule violation. It is stressed that further measurements could be performed at the Cooling Storage Ring (CSR) at Lanzhou of China.
Resumo:
Motivated by recent experimental observation of spin-orbit coupling in carbon nanotube quantum dots [F. Kuemmeth , Nature (London) 452, 448 (2008)], we investigate in detail its influence on the Kondo effect. The spin-orbit coupling intrinsically lifts out the fourfold degeneracy of a single electron in the dot, thereby breaking the SU(4) symmetry and splitting the Kondo resonance even at zero magnetic field. When the field is applied, the Kondo resonance further splits and exhibits fine multipeak structures resulting from the interplay of spin-orbit coupling and the Zeeman effect. A microscopic cotunneling process for each peak can be uniquely identified. Finally, a purely orbital Kondo effect in the two-electron regime is also predicted.
Resumo:
We review recent progress in the determination of the subsaturation density behavior of the nuclear symmetry energy from heavy-ion collisions as well as the theoretical progress in probing the high density behavior of the symmetry energy in heavy-ion reactions induced by high energy radioactive beams. We further discuss the implications of these results for the nuclear effective interactions and the neutron skin thickness of heavy nuclei.
Resumo:
The restriction of the one dimensional (1D) master equation (ME) with the mass number of the projectile-like fragment as a variable is studied, and a two-dimensional (2D) master equation with the neutron and proton numbers as independent variables is set up, and solved numerically. Our study showed that the 2D ME can describe the fusion process well in all projectile-target combinations. Therefore the possible channels to synthesize super-heavy nuclei can be studied correctly in wider possibilities. The available condition for employing 1D ME is pointed out.
Resumo:
Excitation functions have been measured for different projectile-like fragments produced in Al-27(F-19,x)y reactions at incident energies from 110.25 to 118.75 MeV in 250 keV steps. Strong cross section fluctuations of the excitation functions are observed. The cross- correlation coefficients of the excitation functions for different atomic number Z and for different scattering angle theta(cm) have been deduced. These coefficients are much larger than the statistical theoretical calculated ones. This indicates that there are strong correlations between different exit channels in the dissipative heavy ion Collision of Al-27(F-19,x)y.
Resumo:
Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn -> pn gamma. Very interestingly, nevertheless, the ratio of hard photon spectra R-1/2(gamma) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of Sn-132 + Sn-124 and Sn-112 + Sn-112 at E-beam/A = 50 MeV, for example, the R-1/2(gamma) displays a rise up to 15% when the symmetry energy is reduced by about 20% at rho = 1.3 rho(0) which is the maximum density reached in these reactions. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The shell correction is proposed in the improved isospin dependent quantum molecular dynamics (Im-IQMD) model, which plays an important role in heavy-ion fusion reactions near Coulomb barrier. By using the ImIQMD model, the static and dynamical fusion barriers, dynamical barrier distribution in the fusion reactions are analyzed systematically. The fusion and capture excitation functions for a series of reaction systems are calculated and compared with experimental data. It is found that the fusion cross sections for neutron-rich systems increase obviously, and the strong shell effects of two colliding nuclei result in a decrease of the fusion cross sections at the sub-barrier energies. The lowering of the dynamical fusion barriers favors the enhancement of the sub-barrier fusion cross sections, which is related to the nucleon transfer and the neck formation in the fusion reactions.
Resumo:
The properties of hadronic matter at beta equilibrium in a wide range of densities are described by appropriate equations of state in the framework of the relativistic mean field model. Strange meson fields, namely the scalar meson field sigma*(975) and the vector meson field sigma*(1020), are included in the present work. We discuss and compare the results of the equation of state, nucleon effective mass, and strangeness fraction obtained by adopting the TM1, TMA, and GL parameter sets for nuclear sector and three different choices for the hyperon couplings. We find that the parameter set TM1 favours the onset of hyperons most, while at high densities the GL parameter set leads to the most hyperon-rich matter. For a certain parameter set (e.g. TM1), the most hyperon-rich matter is obtained for the hyperon potential model. The influence of the hyperon couplings on the effective mass of nucleon, is much weaker than that on the nucleon parameter set. The nonstrange mesons dominate essentially the global properties of dense hyperon matter. The hyperon potential model predicts the lowest value of the neutron star maximum mass of about 1.45 M-sun to be 0.4-0.5 M-sun lower than the prediction by using the other choices for hyperon couplings.
Resumo:
The dinuclear system model has been further developed by introducing the barrier distribution function method in the process of heavy-ion capture and fusion to synthesize superheavy nuclei. The capture of two colliding nuclei, formation and de-excitation process of compound nucleus are decribed by using empirical coupled channel model, solving master equation numerically and statistical evaporation model, respectively. Within the framework of the dinuclear system model, the fusion-evaporation excitation functions of the systems Ca-48(Am-243, 3n-5n) (288-286)115 and Ca-48(Cm-248, 3n-5n)(293-291)116 are calculated, which are used for synthesizing new superheavy nuclei at Dubna in recent years. Isotopic dependence of production cross sections with double magic nucleus Ca-48 bombarding actinide targets U, Np, Pu, Am, Cm to synthesize superheavy nuclei with charged numbers Z=112-116 is analyzed systematically. Based on these analysis, the optimal projectile-target combination and the optimal excitation energy are proposed. It is shown that shell correction energy and neutron separation energy will play an important role on the isotopic dependence of production cross sections of superheavy nuclei.
Resumo:
The relation between the input impedance and the characteristic parameters of a cavity, such as the resonance frequency, shunt impedance and. the quality factor, has been obtained based on the equivalent circuit of the cavity and the coupling system. Using the matching condition, the ratio of coupling capacitance to the equivalent capacitance of the cavity can be acquired as a function of the characteristic parameters of the cavity, the value of the coupling capacitance can be obtained with a help of a numerical simulation and the perturbation theory, and then the perfect matching between the cavity and the transmission line can be procured. The application of these results on a model cavity is presented too.
Resumo:
By means of the improved quantum molecular dynamics model, the incident energy dependent dynamical fusion potential barriers for heavy nucleus reaction systems are investigated. It is found that with decrease of incident energy the lowest dynamic barrier is obtained which approaches to the adiabatic static barrier and with increase of the incident energy the dynamic barrier goes up to the diabatic static barrier. Based on the dynamical study a microscopic understanding of the extra-push in fusion reactions of heavy systems and a new explanation of tunneling process for the fusion at the incident energy below the static and above the lowest dynamic barrier are presented. In order to understand the energy dependence of the dynamical barrier we also pay a great attention to study the neck formation and shape deformation during the dynamic lowering of the barrier.
Resumo:
The principle of particle coupling between horizontal and vertical directions in solenoid is presented. Further more, the method of decoupling can be obtained by using the coupling dynamic equations. 5000 particles are tracked under three conditions: CSRm doesn't contain solenoids, contains main solenoid and toroids, contains compensating solenoids. The results of the particle trace calculations show that the particles coupling between horizontal and vertical is very serious because of the existence of solenoids, and lot's of particals are lost. Another two solenoids which locate in the fit place can be used to decrease the coupling intensation. The method is proved to be useful by the trace calculations.